1
|
Diaz-Martin Z, Cisternas-Fuentes A, Kay KM, Raguso RA, Skogen K, Fant J. Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia. Heredity (Edinb) 2023; 131:338-349. [PMID: 37700028 PMCID: PMC10673949 DOI: 10.1038/s41437-023-00649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
Differences in reproductive strategies can have important implications for macro- and micro-evolutionary processes. We used a comparative approach through a population genetics lens to evaluate how three distinct reproductive strategies shape patterns of divergence among as well as gene flow and genetic diversity within three closely related taxa in the genus Clarkia. One taxon is a predominantly autonomous self-fertilizer and the other two taxa are predominantly outcrossing but vary in the primary pollinator they attract. In genotyping populations using genotyping-by-sequencing and comparing loci shared across taxa, our results suggest that differences in reproductive strategies in part promote evolutionary divergence among these closely related taxa. Contrary to expectations, we found that the selfing taxon had the highest levels of heterozygosity but a low rate of polymorphism. The high levels of fixed heterozygosity for a subset of loci suggests this pattern is driven by the presence of structural rearrangements in chromosomes common in other Clarkia taxa. In evaluating patterns within taxa, we found a complex interplay between reproductive strategy and geographic distribution. Differences in the mobility of primary pollinators did not translate to a difference in rates of genetic diversity and gene flow within taxa - a pattern likely due to one taxon having a patchier distribution and a less temporally and spatially reliable pollinator. Taken together, this work advances our understanding of the factors that shape gene flow and the distribution of genetic diversity within and among closely related taxa.
Collapse
Affiliation(s)
- Zoe Diaz-Martin
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA.
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA.
| | - Anita Cisternas-Fuentes
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
- Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Krissa Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
- Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, USA
| | - Jeremie Fant
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
- Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Zhang HP, Tao ZB, Trunschke J, Shrestha M, Scaccabarozzi D, Wang H, Ren ZX. Reproductive Isolation Among Three Nocturnal Moth-Pollinated Sympatric Habenaria Species (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:908852. [PMID: 35812980 PMCID: PMC9257206 DOI: 10.3389/fpls.2022.908852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Comparison and quantification of multiple pre- and post-pollination barriers to interspecific hybridization are important to understand the factors promoting reproductive isolation. Such isolating factors have been studied recently in many flowering plant species which seek after the general roles and relative strengths of different pre- and post-pollination barriers. In this study, we quantified six isolating factors (ecogeographic isolation, phenological isolation, pollinator isolation, pollinia-pistil interactions, fruit production, and seed development) that could possibly be acting as reproductive barriers at different stages among three sympatric Habenaria species (H. limprichtii, H. davidii, and H. delavayi). These three species overlap geographically but occupy different microhabitats varying in soil water content. They were isolated through pollinator interactions both ethologically (pollinator preference) and mechanically (pollinia attachment site), but to a variable degree for different species pairs. Interspecific crosses between H. limprichtii and H. davidii result in high fruit set, and embryo development suggested weak post-pollination barriers, whereas bidirectional crosses of H. delavayi with either of the other two species fail to produce fruits. Our results revealed that pollinators were the most important isolating barrier including both ethological and mechanical mechanisms, to maintain the boundaries among these three sympatric Habenaria species. Our study also highlights the importance of a combination of pre-and post-pollination barriers for species co-existence in Orchidaceae.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Bin Tao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Judith Trunschke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Mani Shrestha
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Daniela Scaccabarozzi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Lijiang Forest Biodiversity National Observation and Research Station, Lijiang, China
| |
Collapse
|
3
|
Goff KA, Martinez Del Rio C, Kay KM. A greenhouse experiment partially supports inferences of ecogeographic isolation from niche models of Clarkia sister species. AMERICAN JOURNAL OF BOTANY 2021; 108:2002-2014. [PMID: 34661904 PMCID: PMC9298282 DOI: 10.1002/ajb2.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Ecogeographic isolation, or geographic isolation caused by ecological divergence, is thought to be of primary importance in speciation, yet is difficult to demonstrate and quantify. To determine whether distributions are limited by divergent adaptation or historical contingency, the gold standard is to reciprocally transplant species between their geographic ranges. Alternatively, ecogeographic isolation is inferred from species distribution models and niche divergence tests using widely available environmental and occurrence data. METHODS We tested for ecogeographic isolation between two sister species of California annual wildflowers, Clarkia concinna and C. breweri, with a hybrid approach. We used niche models to predict water availability as the major axis of ecological divergence and then tested that with a greenhouse experiment. Specifically, we manipulated water availability in field soils for two populations of each species and predicted higher fitness in conditions representing home habitats to those representing the environment of each's sister species. RESULTS Water availability and soil representing C. concinna generally increased both species' fitness. Thus, water and soil may indeed limit C. concinna from colonizing the range of C. breweri, but not vice versa. We suggest that the competitive environment and pollinator availability, which are not directly captured with either approach, may be key biotic factors correlated with climate that contribute to unexplained ecogeographic isolation for C. breweri. CONCLUSIONS Ours is a valuable approach to assessing ecogeographic isolation, in that it balances feasibility with model validation, and our results have implications for species distribution modeling efforts geared toward predicting climate change responses.
Collapse
Affiliation(s)
- Kaleb A. Goff
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
- Present address:
Kaleb A. Goff, Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNC 27695USA
| | | | - Kathleen M. Kay
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCA95060USA
| |
Collapse
|
4
|
Arceo-Gómez G. Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity. ANNALS OF BOTANY 2021; 128:383-394. [PMID: 34226913 PMCID: PMC8414913 DOI: 10.1093/aob/mcab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Studies that aim to understand the processes that generate and organize plant diversity in nature have a long history in ecology. Among these, the study of plant-plant interactions that take place indirectly via pollinator choice and floral visitation has been paramount. Current evidence, however, indicates that plants can interact more directly via heterospecific pollen (HP) transfer and that these interactions are ubiquitous and can have strong fitness effects. The intensity of HP interactions can also vary spatially, with important implications for floral evolution and community assembly. SCOPE Interest in understanding the role of heterospecific pollen transfer in the diversification and organization of plant communities is rapidly rising. The existence of spatial variation in the intensity of species interactions and their role in shaping patterns of diversity is also well recognized. However, after 40 years of research, the importance of spatial variation in HP transfer intensity and effects remains poorly known, and thus we have ignored its potential in shaping patterns of diversity at local and global scales. Here, I develop a conceptual framework and summarize existing evidence for the ecological and evolutionary consequences of spatial variation in HP transfer interactions and outline future directions in this field. CONCLUSIONS The drivers of variation in HP transfer discussed here illustrate the high potential for geographic variation in HP intensity and its effects, as well as in the evolutionary responses to HP receipt. So far, the study of pollinator-mediated plant-plant interactions has been almost entirely dominated by studies of pre-pollination interactions even though their outcomes can be influenced by plant-plant interactions that take place on the stigma. It is hence critical that we fully evaluate the consequences and context-dependency of HP transfer interactions in order to gain a more complete understanding of the role that plant-pollinator interactions play in generating and organizing plant biodiversity.
Collapse
Affiliation(s)
- Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
5
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Rahim SA, Kodandaramaiah U, Kulkarni A, Barua D. Striking between-population floral divergences in a habitat specialized plant. PLoS One 2021; 16:e0253038. [PMID: 34181672 PMCID: PMC8238184 DOI: 10.1371/journal.pone.0253038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
When the habitat occupied by a specialist species is patchily distributed, limited gene flow between the fragmented populations may allow population differentiation and eventual speciation. 'Sky islands'-montane habitats that form terrestrial islands-have been shown to promote diversification in many taxa through this mechanism. We investigate floral variation in Impatiens lawii, a plant specialized on laterite rich rocky plateaus that form sky islands in the northern Western Ghats mountains of India. We focus on three plateaus separated from each other by ca. 7 to 17 km, and show that floral traits have diverged strongly between these populations. In contrast, floral traits have not diverged in the congeneric I. oppositifolia, which co-occurs with I. lawii in the plateaus, but is a habitat generalist that is also found in the intervening valleys. We conducted common garden experiments to test whether the differences in I. lawii are due to genetic differentiation or phenotypic plasticity. There were strong differences in floral morphology between experimental plants sourced from the three populations, and the relative divergences between population pairs mirrored that seen in the wild, indicating that the populations are genetically differentiated. Common garden experiments confirmed that there was no differentiation in I. oppositifolia. Field floral visitation surveys indicated that the observed differences in floral traits have consequences for I. lawii populations, by reducing the number of visitors and changing the relative abundance of different floral visitor groups. Our results highlight the role of habitat specialization in diversification, and corroborates the importance of sky islands as centres of diversification.
Collapse
Affiliation(s)
- Sumayya Abdul Rahim
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Aboli Kulkarni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Deepak Barua
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
7
|
Ibañez A, Moré M, Salazar G, Leiva S, Barboza G, Cocucci A. Crescendo, diminuendo and subito of the trumpets: winds of change in the concerted evolution between flowers and pollinators in Salpichroa (Solanaceae). Mol Phylogenet Evol 2019; 132:90-99. [DOI: 10.1016/j.ympev.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
|