1
|
Merckx VSFT, Gomes SIF, Wang D, Verbeek C, Jacquemyn H, Zahn FE, Gebauer G, Bidartondo MI. Mycoheterotrophy in the wood-wide web. NATURE PLANTS 2024; 10:710-718. [PMID: 38641664 DOI: 10.1038/s41477-024-01677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The prevalence and potential functions of common mycorrhizal networks, or the 'wood-wide web', resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.
Collapse
Affiliation(s)
- Vincent S F T Merckx
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands.
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sofia I F Gomes
- Above-belowground Interactions, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Deyi Wang
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Cas Verbeek
- Understanding Evolution, Naturalis Biodiversity Center, Leiden, the Netherlands
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Jacquemyn
- Plant Population Biology and Conservation, Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
2
|
Miura C, Furui Y, Yamamoto T, Kanno Y, Honjo M, Yamaguchi K, Suetsugu K, Yagame T, Seo M, Shigenobu S, Yamato M, Kaminaka H. Autoactivation of mycorrhizal symbiosis signaling through gibberellin deactivation in orchid seed germination. PLANT PHYSIOLOGY 2023; 194:546-563. [PMID: 37776523 PMCID: PMC10756758 DOI: 10.1093/plphys/kiad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Orchids parasitically depend on external nutrients from mycorrhizal fungi for seed germination. Previous findings suggest that orchids utilize a genetic system of mutualistic arbuscular mycorrhizal (AM) symbiosis, in which the plant hormone gibberellin (GA) negatively affects fungal colonization and development, to establish parasitic symbiosis. Although GA generally promotes seed germination in photosynthetic plants, previous studies have reported low sensitivity of GA in seed germination of mycoheterotrophic orchids where mycorrhizal symbiosis occurs concurrently. To elucidate the connecting mechanisms of orchid seed germination and mycorrhizal symbiosis at the molecular level, we investigated the effect of GA on a hyacinth orchid (Bletilla striata) seed germination and mycorrhizal symbiosis using asymbiotic and symbiotic germination methods. Additionally, we compared the transcriptome profiles between asymbiotically and symbiotically germinated seeds. Exogenous GA negatively affected seed germination and fungal colonization, and endogenous bioactive GA was actively converted to the inactive form during seed germination. Transcriptome analysis showed that B. striata shared many of the induced genes between asymbiotically and symbiotically germinated seeds, including GA metabolism- and signaling-related genes and AM-specific marker homologs. Our study suggests that orchids have evolved in a manner that they do not use bioactive GA as a positive regulator of seed germination and instead autoactivate the mycorrhizal symbiosis pathway through GA inactivation to accept the fungal partner immediately during seed germination.
Collapse
Affiliation(s)
- Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuki Furui
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tatsuki Yamamoto
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Masaya Honjo
- Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nakagami-gun 903-0213, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, Chiba 271-8510, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
3
|
Ali U, Khan MM, Khan N, Haya RT, Asghar MU, Abbasi BH. Chimaphila umbellata; a biotechnological perspective on the coming-of-age prince's pine. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-16. [PMID: 37359710 PMCID: PMC10249550 DOI: 10.1007/s11101-023-09880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Chimaphila umbellata has been studied for almost two centuries now, with the first paper exploring the phytochemistry of the plant published in 1860. Almost all contemporary studies focus on the biotechnological advances of C. umbellata including its utilization as a natural alternative in the cosmetic, food, biofuel, and healthcare industry, with a special focus on its therapeutic uses. This literature review critically investigates the significance and applications of secondary metabolites extracted from the plant and presses on the biotechnological approaches to improve its utilization. C. umbellata is home to many industrially and medicinally important phytochemicals, the majority of which belong to phenolics, sterols, and triterpenoids. Other important compounds include 5-hydroxymethylfurfural, isohomoarbutin, and methyl salicylate (the only essential oil of the plant). Chimaphilin is the characteristic phytochemical of the plant. This review focuses on the phytochemistry of C. umbellata and digs into their chemical structures and attributes. It further discusses the challenges of working with C. umbellata including its alarming conservation status, problems with in-vitro cultivation, and research and development issues. This review concludes with recommendations based on biotechnology, bioinformatics, and their crucial interface.
Collapse
Affiliation(s)
- Urooj Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590 Punjab Pakistan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | - Naveera Khan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Rida tul Haya
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France
| |
Collapse
|
4
|
Suetsugu K, Okada H. Symbiotic germination and development of fully mycoheterotrophic plants convergently targeting similar Glomeraceae taxa. Environ Microbiol 2021; 23:6328-6343. [PMID: 34545683 DOI: 10.1111/1462-2920.15781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Plants producing dust seeds often meet their carbon demands by exploiting fungi at the seedling stage. This germination strategy (i.e. mycoheterotrophic germination) has been investigated among orchidaceous and ericaceous plants exploiting Ascomycota or Basidiomycota. Although several other angiosperm lineages have evolved fully mycoheterotrophic relationships with Glomeromycota, the fungal identities involved in mycoheterotrophic germination remain largely unknown. Here, we conducted in situ seed baiting and high-throughput DNA barcoding to identify mycobionts associated with seedlings of Burmannia championii (Burmanniaceae: Dioscoreales) and Sciaphila megastyla (Triuridaceae: Pandanales), which have independently evolved full mycoheterotrophy. Subsequently, we revealed that both seedlings and adults in B. championii and S. megastyla predominantly associate with Glomeraceae. However, mycorrhizal communities are somewhat distinct between seedling and adult stages, particularly in S. megastyla. Notably, the dissimilarity of mycorrhizal communities between S. megastyla adult samples and S. megastyla seedling samples is significantly higher than that between B. championi adult samples and S. megastyla adult samples, based on some indices. This pattern is possibly due to both mycorrhizal shifts during ontogenetic development and convergent recruitment of cheating-susceptible fungi. The extensive fungal overlap in two unrelated mycoheterotrophic plants indicates that both species convergently exploit specific AM fungal phylotypes.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
5
|
Matsuda Y, Yamaguchi Y, Matsuo N, Uesugi T, Ito J, Yagame T, Figura T, Selosse MA, Hashimoto Y. Communities of mycorrhizal fungi in different trophic types of Asiatic Pyrola japonica sensu lato (Ericaceae). JOURNAL OF PLANT RESEARCH 2020; 133:841-853. [PMID: 33099700 DOI: 10.1007/s10265-020-01233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Mixotrophic plants obtain carbon by their own photosynthetic activity and from their root-associated mycorrhizal fungi. Mixotrophy is deemed a pre-adaptation for evolution of mycoheterotrophic nutrition, where plants fully depend on fungi and lose their photosynthetic activity. The aim of this study was to clarify mycorrhizal dependency and heterotrophy level in various phenotypes of mixotrophic Pyrola japonica (Ericaceae), encompassing green individuals, rare achlorophyllous variants (albinos) and a form with minute leaves, P. japonica f. subaphylla. These three phenotypes were collected in two Japanese forests. Phylogenetic analysis of both plants and mycorrhizal fungi was conducted based on DNA barcoding. Enrichment in 13C among organs (leaves, stems and roots) of the phenotypes with reference plants and fungal fruitbodies were compared by measuring stable carbon isotopic ratio. All plants were placed in the same clade, with f. subaphylla as a separate subclade. Leaf 13C abundances of albinos were congruent with a fully mycoheterotrophic nutrition, suggesting that green P. japonica leaves are 36.8% heterotrophic, while rhizomes are 74.0% heterotrophic. There were no significant differences in δ13C values among organs in both albino P. japonica and P. japonica f. subaphylla, suggesting full and high mycoheterotrophic nutrition, respectively. Among 55 molecular operational taxonomic units (OTUs) detected as symbionts, the genus Russula was the most abundant in each phenotype and its dominance was significantly higher in albino P. japonica and P. japonica f. subaphylla. Russula spp. detected in P. japonica f. subaphylla showed higher dissimilarity with other phenotypes. These results suggest that P. japonica sensu lato is prone to evolve mycoheterotrophic variants, in a process that changes its mycorrhizal preferences, especially towards the genus Russula for which this species has a marked preference.
Collapse
Affiliation(s)
- Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yusuke Yamaguchi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Naoko Matsuo
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Takashi Uesugi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Junko Ito
- Natural History Museum and Institute, Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Takahiro Yagame
- Mizuho Municipal Museum, 316-5 Kamagata-fujisan, Mizuho-machi, Tokyo, 190-1202, Japan
| | - Tomáš Figura
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844, Prague, Czech Republic
| | - Marc-André Selosse
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Yasushi Hashimoto
- Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
6
|
May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, Figura T, Minasiewicz J, Selosse MA. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. MYCORRHIZA 2020; 30:51-61. [PMID: 31965295 DOI: 10.1007/s00572-020-00932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.
Collapse
Affiliation(s)
- Michał May
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alžběta Novotná
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jennifer Dietel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Félix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Julita Minasiewicz
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France.
| |
Collapse
|
7
|
Herrera H, Soto J, de Bashan LE, Sampedro I, Arriagada C. Root-Associated Fungal Communities in Two Populations of the Fully Mycoheterotrophic Plant Arachnitis uniflora Phil. (Corsiaceae) in Southern Chile. Microorganisms 2019; 7:E586. [PMID: 31756978 PMCID: PMC6955791 DOI: 10.3390/microorganisms7120586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiological interactions of the roots of non-photosynthetic plants in South America have been scarcely explored. This study analyzes culturable fungal diversity associated with the mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae) in southern Chile, growing in two different understoreys of native (Nothofagus-dominated) and mixed forest (native, Cupressus sempervirens, and Pinus radiata). Rhizospheric and endophytic fungi were isolated, cultured, and purified to identify microorganisms associated with A. uniflora roots. We showed the different fungi associated with the plant, and that these distributions are influenced by the sampling site. We isolated 410 fungal strains (144 endophytic and 266 from the rhizosphere). We identified 13 operative taxonomical units from plants sampled in the mixed forest, while 15 were from the native forest. Rhizospheric microorganisms were mainly related to Penicillium spp., whereas some pathogenic and saprophytic strains were more frequent inside the roots. Our results have also shown that the fungal strains are weak for phosphate solubilization, but other pathways such as organic acid exudation and indole acetic acid production can be considered as major mechanisms to stimulate plant growth. Our results point to new fungal associates of A. uniflora plants reported in Andean ecosystems, identifying new beneficial endophytic fungi associated with roots of this fully mycoheterotrophic plant.
Collapse
Affiliation(s)
- Hector Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Javiera Soto
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Luz E. de Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA;
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S., Mexico
| | - Inmaculada Sampedro
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| |
Collapse
|