1
|
Mandáková T, Krumpolcová A, Matyášek R, Volkov R, Lysak MA, Kovařík A. Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38838061 DOI: 10.1111/tpj.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Alice Krumpolcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, 58012, Chernivtsi, Ukraine
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Ales Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| |
Collapse
|
2
|
Sakamoto T, Ikematsu S, Nakayama H, Mandáková T, Gohari G, Sakamoto T, Li G, Hou H, Matsunaga S, Lysak MA, Kimura S. A chromosome-level genome assembly for the amphibious plant Rorippa aquatica reveals its allotetraploid origin and mechanisms of heterophylly upon submergence. Commun Biol 2024; 7:431. [PMID: 38637665 PMCID: PMC11026429 DOI: 10.1038/s42003-024-06088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The ability to respond to varying environments is crucial for sessile organisms such as plants. The amphibious plant Rorippa aquatica exhibits a striking type of phenotypic plasticity known as heterophylly, a phenomenon in which leaf form is altered in response to environmental factors. However, the underlying molecular mechanisms of heterophylly are yet to be fully understood. To uncover the genetic basis and analyze the evolutionary processes driving heterophylly in R. aquatica, we assembled the chromosome-level genome of the species. Comparative chromosome painting and chromosomal genomics revealed that allopolyploidization and subsequent post-polyploid descending dysploidy occurred during the speciation of R. aquatica. Based on the obtained genomic data, the transcriptome analyses revealed that ethylene signaling plays a central role in regulating heterophylly under submerged conditions, with blue light signaling acting as an attenuator of ethylene signal. The assembled R. aquatica reference genome provides insights into the molecular mechanisms and evolution of heterophylly.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Hokuto Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Gaojie Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan.
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan.
| |
Collapse
|
3
|
Li LZ, Xu ZG, Chang TG, Wang L, Kang H, Zhai D, Zhang LY, Zhang P, Liu H, Zhu XG, Wang JW. Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nat Commun 2023; 14:290. [PMID: 36653415 PMCID: PMC9849336 DOI: 10.1038/s41467-023-35966-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.
Collapse
Affiliation(s)
- Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tian-Gen Chang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Heng Kang
- Department of Computer Science and Technology, Nanjing University, Nanjing, 210093, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
You C, Wen R, Zhang Z, Cheng G, Zhang Y, Li N, Deng C, Li S, Gao W. Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus. FRONTIERS IN PLANT SCIENCE 2022; 13:1010664. [PMID: 36247554 PMCID: PMC9559582 DOI: 10.3389/fpls.2022.1010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Garden asparagus (Asparagus officinalis, 2n = 2x = 20 chromosomes) is an important dioecious vegetable crop and a model species for studying sex chromosome formation and evolution. However, few molecular cytogenetic studies on garden asparagus have been reported because of its small metaphase chromosomes, the scarcity of distinguished cytogenetic markers, and the high content of repetitive sequences. In this study, a set of single copy genes free of repetitive sequences with sizes ranging from 4.3 kb to 8.2 kb were screened and used as probes for fluorescence in situ hybridization (FISH) to identify individual chromosomes of garden asparagus. The chromosome-specific signal distribution patterns of these probes enabled the distinguishment of each pair of chromosomes. The sequence assembly and cytogenetic map were successfully integrated, and the results confirmed that the chromosome 1 representing the sex chromosome in the genome assembly is chromosome 5 in the karyotype analysis. The cytogenetic identification of the male-specific region of the Y chromosome (MSY) was implemented using a mixed probe derived from a number of MSY-specific single copy sequences. In addition, the chromosome orthologous relationship between garden asparagus (A1-A10, karyotypic analysis) and its hermaphrodite close relative, A. setaceus (B1-B10, karyotypic analysis), was analyzed using this collection of chromosome-specific cytological markers. The results showed that B3 is the ortholog of sex chromosome A5 and thus may represent the ancestral autosome of the current sex chromosome in garden asparagus. Chromosomes B5, B4, B1, B8, B7, and B9 are the orthologs of A2, A3, A4, A7, A8, and A10, respectively. The chromosome identification, cytogenetic recognition of MSY, and the orthologous relationship analysis between garden asparagus and A. setaceus are valuable for the further investigation of the sex chromosome emergence and evolutionary mechanism of garden asparagus and genome structure evolution in the Asparagus genus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shufen Li
- *Correspondence: Wujun Gao, ; Shufen Li,
| | - Wujun Gao
- *Correspondence: Wujun Gao, ; Shufen Li,
| |
Collapse
|
5
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
6
|
Ru Y, Mandáková TM, Lysak MA, Koch MA. The evolutionary history of Cardamine bulbifera shows a successful rapid postglacial Eurasian range expansion in the absence of sexual reproduction. ANNALS OF BOTANY 2022; 130:245-263. [PMID: 35789248 PMCID: PMC9445599 DOI: 10.1093/aob/mcac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.
Collapse
Affiliation(s)
- Yalu Ru
- Centre for Organismal Studies Heidelberg (COS), Department of Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - Terezie M Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
7
|
Bruun Asmussen Lange C, Pavlo Hauser T, Deichmann V, Ørgaard M. Hybridization and complex evolution of Barbarea vulgaris and related species (Brassicaceae). Mol Phylogenet Evol 2022; 169:107425. [DOI: 10.1016/j.ympev.2022.107425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/15/2020] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
8
|
Feng L, Lin H, Kang M, Ren Y, Yu X, Xu Z, Wang S, Li T, Yang W, Hu Q. A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Res 2022; 29:dsac004. [PMID: 35094078 PMCID: PMC8801980 DOI: 10.1093/dnares/dsac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai-Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener (C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.
Collapse
Affiliation(s)
- Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhanpeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Kadluczka D, Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae). BMC Genomics 2021; 22:508. [PMID: 34225677 PMCID: PMC8259371 DOI: 10.1186/s12864-021-07853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. Results We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. Conclusions The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07853-2.
Collapse
Affiliation(s)
- Dariusz Kadluczka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|
10
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Ecological and spatial patterns associated with diversification of South American Physaria (Brassicaceae) through the general concept of species. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00486-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Levin DA. Propagule pressure and the establishment of emergent polyploid populations. ANNALS OF BOTANY 2021; 127:1-5. [PMID: 33106838 PMCID: PMC7750715 DOI: 10.1093/aob/mcaa187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Whereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence. HYPOTHESIS The emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion. CONCLUSION The extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
14
|
Bi Y, Zhao Q, Yan W, Li M, Liu Y, Cheng C, Zhang L, Yu X, Li J, Qian C, Wu Y, Chen J, Lou Q. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:178-186. [PMID: 31692131 DOI: 10.1111/tpj.14600] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.
Collapse
Affiliation(s)
- Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Mandáková T, Hloušková P, Koch MA, Lysak MA. Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning. THE PLANT CELL 2020; 32:650-665. [PMID: 31919297 PMCID: PMC7054033 DOI: 10.1105/tpc.19.00557] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Hloušková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics/Botanical Garden and Herbarium (HEID), Heidelberg University, Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
16
|
Melichárková A, Šlenker M, Zozomová-Lihová J, Skokanová K, Šingliarová B, Kačmárová T, Caboňová M, Kempa M, Šrámková G, Mandáková T, Lysák MA, Svitok M, Mártonfiová L, Marhold K. So Closely Related and Yet So Different: Strong Contrasts Between the Evolutionary Histories of Species of the Cardamine pratensis Polyploid Complex in Central Europe. FRONTIERS IN PLANT SCIENCE 2020; 11:588856. [PMID: 33391302 PMCID: PMC7775393 DOI: 10.3389/fpls.2020.588856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.
Collapse
Affiliation(s)
- Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Skokanová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Šingliarová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tatiana Kačmárová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matúš Kempa
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Šrámková
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysák
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Karol Marhold,
| |
Collapse
|
17
|
Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA. Origin and Evolution of Diploid and Allopolyploid Camelina Genomes Were Accompanied by Chromosome Shattering. THE PLANT CELL 2019; 31:2596-2612. [PMID: 31451448 PMCID: PMC6881126 DOI: 10.1105/tpc.19.00366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 05/20/2023]
Abstract
Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Milan Pouch
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jordan R Brock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Ihsan A Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, Missouri 63110
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Chester M. The makings of higher-order polyploids. A commentary on: 'The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives'. ANNALS OF BOTANY 2019; 124:vi-vii. [PMID: 31247076 PMCID: PMC6758571 DOI: 10.1093/aob/mcz109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article comments on: Terezie Mandáková, Judita Zozomová-Lihová, Hiroshi Kudoh, Yunpeng Zhao, Martin A. Lysak, and Karol Marhold. 2019. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. Annals of Botany 124(2): 209–220.
Collapse
Affiliation(s)
- Michael Chester
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|
19
|
Leostrin AV, Mayorov SR. Current State and Distribution of Alien Weedy Cardamine occulta Hornem. (Brassicaceae) in European Russia. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2019. [DOI: 10.1134/s207511171903007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|