1
|
Xue T, Feng T, Liang Y, Yang X, Qin F, Yu J, Janssens SB, Yu S. Radiating diversification and niche conservatism jointly shape the inverse latitudinal diversity gradient of Potentilla L. (Rosaceae). BMC PLANT BIOLOGY 2024; 24:443. [PMID: 38778263 PMCID: PMC11112792 DOI: 10.1186/s12870-024-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Feng
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Gelderland, the Netherlands
| | - Yunfen Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Fei Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianghong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium.
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, BE-3001, Belgium.
| | - Shengxiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Li QQ, Zhang ZP, Aogan, Wen J. Comparative chloroplast genomes of Argentina species: genome evolution and phylogenomic implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1349358. [PMID: 38766467 PMCID: PMC11099909 DOI: 10.3389/fpls.2024.1349358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 05/22/2024]
Abstract
The genus Argentina Hill belongs to the tribe Potentilleae Sweet and contains approximately 75 species predominantly distributed in the Sino-Himalayan region and the Malesian archipelago. So far we have less knowledge on the phylogenetic relationships within Argentina owing to limited sampling of Argentina taxa or gene fragments in previous studies. Moreover, to date there is no phylogenetic study on Argentina from the perspective of comparative chloroplast (cp) genomics. Here we performed comparative genomic analyses on the cp genomes of 39 accessions representing 18 taxa of Argentina. The Argentina cp genomes presented the typical quadripartite structure, with the sizes ranging from 155 096 bp to 157 166 bp. The 39 Argentina cp genomes contained a set of 112 unique genes, comprising four ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes, as well as 78 protein-coding genes (PCGs). The cp genome organization, gene content and order in Argentina were highly conserved, but some visible divergences were present in IR/SC boundary regions. Ten regions (trnH-GUG-psbA, trnG-GCC-trnfM-CAU, trnD-GUC-trnY-GUA, rpl32-trnL-UAG, atpH-atpI, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, ndhF-rpl32, trnR-UCU-atpA, and accD-psaI) were identified as excellent candidate DNA markers for future studies on species identification, population genetics and phylogeny of Argentina. Our results indicated that Argentina is monophyletic. In the current sampling, the A. smithiana - A. anserina clade was sister to the remainder of Argentina. Our results corroborated the previous taxonomic treatments to transfer A. phanerophlebia and A. micropetala from the genus Sibbaldia L. to Argentina. Our results showed close relationships among A. stenophylla, A. microphylla, A. taliensis, and A. tatsienluensis, congruent with previous studies based on the morphology of these species. Twenty-six genes (rps3, rps15, rps16, rps19, rpl16, rpl20, rpl22, rpoA, rpoB, rpoC1, rpoC2, atpA, atpF, psbB, psbF, ndhA, ndhB, ndhC, ndhD, ndhF, rbcL, accD, ccsA, matK, ycf1, ycf2) were with sites under positive selection, and adaptive evolution of these genes might have played crucial roles in Argentina species adaptation to the harsh mountain environment. This study will facilitate future work on taxonomy, phylogenetics, and adaptive evolution of Argentina.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Aogan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
3
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
5
|
Bartha L, Mandáková T, Kovařík A, Bulzu PA, Rodde N, Mahelka V, Lysak MA, Fustier MA, Šafář J, Cápal P, Keresztes L, Banciu HL. Intact ribosomal DNA arrays of Potentilla origin detected in Erythronium nucleus suggest recent eudicot-to-monocot horizontal transfer. THE NEW PHYTOLOGIST 2022; 235:1246-1259. [PMID: 35460285 DOI: 10.1111/nph.18171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.
Collapse
Affiliation(s)
- László Bartha
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, 31320, Castanet Tolosan, France
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, 25243, Průhonice, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | | | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 779 00, Olomouc, Czech Republic
| | - Lujza Keresztes
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
- Centre of Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| | - Horia L Banciu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
- Centre of Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Toro-Delgado E, Hernández-Roldán J, Dincă V, Vicente JC, Shaw MR, Quicke DL, Vodă R, Albrecht M, Fernández-Triana J, Vidiella B, Valverde S, Dapporto L, Hebert PDN, Talavera G, Vila R. Butterfly–parasitoid–hostplant interactions in Western Palaearctic Hesperiidae: a DNA barcoding reference library. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The study of ecological interactions between plants, phytophagous insects and their natural enemies is an essential but challenging component for understanding ecosystem dynamics. Molecular methods such as DNA barcoding can help elucidate these interactions. In this study, we employed DNA barcoding to establish hostplant and parasitoid interactions with hesperiid butterflies, using a complete reference library for Hesperiidae of continental Europe and north-western Africa (53 species, 100% of those recorded) based on 2934 sequences from 38 countries. A total of 233 hostplant and parasitoid interactions are presented, some recovered by DNA barcoding larval remains or parasitoid cocoons. Combining DNA barcode results with other lines of evidence allowed 94% species-level identification for Hesperiidae, but success was lower for parasitoids, in part due to unresolved taxonomy. Potential cases of cryptic diversity, both in Hesperiidae and Microgastrinae, are discussed. We briefly analyse the resulting interaction networks. Future DNA barcoding initiatives in this region should focus attention on north-western Africa and on parasitoids, because in these cases barcode reference libraries and taxonomy are less well developed.
Collapse
Affiliation(s)
| | - Juan Hernández-Roldán
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid , c/ Darwin, 2, ES - 28049 Madrid , Spain
| | - Vlad Dincă
- Ecology and Genetics Research Unit, PO Box 3000, University of Oulu , 90014 Oulu , Finland
- Research Institute of the University of Bucharest (ICUB), University of Bucharest , Bucharest , Romania
| | | | - Mark R Shaw
- National Museums of Scotland , Edinburgh , UK
| | - Donald Lj Quicke
- Department of Biology, Faculty of Life Sciences, Chulalongkorn University , Bangkok , Thailand
| | | | | | | | - Blai Vidiella
- Centre de Recerca Matemàtica , Edifici C , Campus de Bellaterra, Barcelona , Spain
| | - Sergi Valverde
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
- European Centre for Living Technology , Venice , Italy
| | - Leonardo Dapporto
- Dipartimento di Biologia, University of Florence , 50019 Sesto Fiorentino , Italy
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph , Guelph, ON N1G 2W1 , Canada
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona , Passeig del Migdia s/n, 08038 Barcelona , Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF) , 03008 Barcelona , Spain
| |
Collapse
|
7
|
Chen C, Xia X, Peng J, Wang D. Comparative Analyses of Six Complete Chloroplast Genomes from the Genus Cupressus and Juniperus (Cupressaceae). Gene 2022; 837:146696. [PMID: 35738448 DOI: 10.1016/j.gene.2022.146696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Cupressaceae is a conifer family distributed around the world. Cupressus and Juniperus are the main genera of the Cupressaceae family and have important medicinal value. This leads to confusion between Cupressus and Juniperus due to similar morphologies. Here, the complete cp genomes of two Cupressus (C. duclouxiana and C. funebri) and four Juniperus (J. chinensis, J. gaussenii J. pingii and J. procumbens) were sequenced. The results revealed that the length of the cp genomes ranged from 126,996 bp to 129,959 bp, with 119 genes comprising 82 protein-coding genes, 33 transfer RNAs and 4 ribosomal RNAs. All chloroplast genomes of Cupressus and Juniperus lost whole IR regions, which is consistent with gymnosperm cp genome studies. In addition, the number of SSRs per species ranged from 54 to 73 and was dominated by mononucleotide repeats. In the six cp genomes of Cupressus and Juniperus, five highly divergent regions, including accD, accD-rpl2, ycf1, ycf2 and rrn23-rrn4.5, can be used as DNA barcodes of interspecific relationships and potential genetic markers. We compared the gene selection pressures (C. chengiana as reference species), and 6 genes underwent positive selection, the majority of which were related to photosynthesis. Phylogenetic results showed that the monophyly of Cupressus and Juniperus supported most bootstrap support. Cupressus funebris and J. chinensis were resolved to be early diverging species within Cupressus and Juniperus, and the two genera were sister groups to each other. This research revealed a new understanding of the structural pluralism and phylogenetic relationships of Cupressaceae cp genomes. These results will facilitate comprehension of the complexity and diversity of conifer cp genomes. SIGNIFICANCE:: Phylogenetic relationships among Cupressus, Juniperus, and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address relationships and attempt to produce a more robust classification, we sequenced 6 new plastid genomes (plastomes) from the two variously described genera in this complex (Cupressus and Juniperus) and compared them with additional plastomes from diverse members of Cupressaceae. Our study corroborated the accD of Cupressophytes have a tendency to expand in size and strongly supported a sister relationship between Cupressus and Juniperus. The disparity in these results could be traced to the facts that the chloroplast genome is uniparentally inherited, also the usage of the whole chloroplast genome for this research is of a better advantage compared to usage of selected genes or portion of the plastome. The complete CP genomic data will provide useful information for studying genetic diversity and species identification, which is important for the overarching goal of biodiversity conservation.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Xi Xia
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
8
|
Kim SH, Shukhertei A, Yang J, Kim SC. Characterization of the complete chloroplast genome sequence of Potentilla gageodoensis (rosaceae), endemic to the continental islands of Korea. Mitochondrial DNA B Resour 2022; 7:678-680. [PMID: 35478852 PMCID: PMC9037193 DOI: 10.1080/23802359.2022.2067497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study reports the complete chloroplast genome sequence of a continental island endemic, Potentilla gageodoensis. The total plastome size was 156,397 bp, comprising one large single-copy (LSC; 85,768 bp), one small single-copy (SSC; 18,589 bp), and two inverted repeat (IR) regions (IRa and IRb, each with 26,020 bp). The overall GC content was 36.92%, and the plastome contained 131 genes, comprising 84 protein-coding genes with two pseudogenes (infA and ycf1), 37 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic analysis performed using 27 representative Rosoideae plastomes suggests that the genus Potentilla is not monophyletic and that P. gageodoensis is sister to the clade containing four taxa of Potentilla (P. freyniana, P. freyniana var. chejuensis, P. stolonifera, and P. stolonifera var. quelpaertensis). The present study reveals the taxonomic distinction of P. gageodoensis from its congeneric species in Korea and the plastome sequence obtained from this study can be used to study phylogenetic relationships and taxonomic status.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ariun Shukhertei
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Chromosome-Level Genome Assembly Provides New Insights into Genome Evolution and Tuberous Root Formation of Potentilla anserina. Genes (Basel) 2021; 12:genes12121993. [PMID: 34946942 PMCID: PMC8700974 DOI: 10.3390/genes12121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.
Collapse
|
10
|
Molecular Phylogeny and Phylogeography of Potentilla multifida L. agg. (Rosaceae) in Northern Eurasia with Special Focus on Two Rare and Critically Endangered Endemic Species, P. volgarica and P. eversmanniana. PLANTS 2020; 9:plants9121798. [PMID: 33352996 PMCID: PMC7766615 DOI: 10.3390/plants9121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
The results of a molecular genetic study of Potentilla multifida agg. using two plastid markers (ndhC-trnV and psbA-trnH) and a nuclear ITS marker suggested that this group comprises a number of relatively young and incompletely differentiated species widely distributed in Northern Eurasia. The sequences were analyzed using tree-based (maximum likelihood) and network-based (statistical parsimony network) approaches. The plastid data suggested incomplete lineage sorting, characteristic of the group as a whole. The nuclear ITS results demonstrated quite a different pattern, with mostly conspecific accessions shaping monophyletic clades. The majority of the Potentilla sect. Multifidae species studied possess few, usually closely related plastid haplotypes, or are even monomorphic. In contrast, P. volgarica, a narrow endemic from the Volga River valley, presents plastid haplotypes belonging to two distantly related groups. Such a pattern of genetic diversity in P. volgarica may be explained by a long persistence of the species within an extremely small distribution range, on the right bank of the Volga River, most likely representing a contemporary refugium. The genealogy of plastid markers in P. volgarica suggests that this species is ancestral to P.eversmanniana, another narrow endemic from the S Urals.
Collapse
|