1
|
Johnston CR, Horn PJ, Alonso AP. First draft reference genome and annotation of the alternative oil species Physaria fendleri. G3 (BETHESDA, MD.) 2024; 14:jkae114. [PMID: 38805698 PMCID: PMC11373644 DOI: 10.1093/g3journal/jkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
In the wake of increasing demand for renewable energy sources, plant-based sources including alternative oilseeds have come to the forefront of interest. Hydroxy fatty acids (HFAs), produced in a few oilseed species, are important chemical feed stocks for industrial applications. An integrated approach was taken to assemble the first draft genome of the alternative HFA producer Physaria fendleri (n = 6), an outcrossing species with high heterozygosity. Both de novo transcriptome assemblies and genome assemblies were produced with public and generated sequencing reads. Resulting intermediate assemblies were then scaffolded and patched with multiple data sources, followed by super-scaffolding onto a masked genome of Camelina laxa (n = 6). Despite a current lack of available resources for the physical mapping of genomic scaffolds of P. fendleri, topography of the genome with respect to repeat and gene content was preserved at the scaffold level and not significantly lost via super-scaffolding. Read representation, gene and genome completion statistics, and annotation results illustrated the creation of a functional draft genome and a tool for future research on alternative oil species.
Collapse
Affiliation(s)
- Christopher R Johnston
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Patrick J Horn
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Ana Paula Alonso
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
2
|
Tariq A, Meng M, Jiang X, Bolger A, Beier S, Buchmann JP, Fernie AR, Wen W, Usadel B. In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2096-2115. [PMID: 38872506 DOI: 10.1111/tpj.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Tea, one of the most widely consumed beverages globally, exhibits remarkable genomic diversity in its underlying flavour and health-related compounds. In this study, we present the construction and analysis of a tea pangenome comprising a total of 11 genomes, with a focus on three newly sequenced genomes comprising the purple-leaved assamica cultivar "Zijuan", the temperature-sensitive sinensis cultivar "Anjibaicha" and the wild accession "L618" whose assemblies exhibited excellent quality scores as they profited from latest sequencing technologies. Our analysis incorporates a detailed investigation of transposon complement across the tea pangenome, revealing shared patterns of transposon distribution among the studied genomes and improved transposon resolution with long read technologies, as shown by long terminal repeat (LTR) Assembly Index analysis. Furthermore, our study encompasses a gene-centric exploration of the pangenome, exploring the genomic landscape of the catechin pathway with our study, providing insights on copy number alterations and gene-centric variants, especially for Anthocyanidin synthases. We constructed a gene-centric pangenome by structurally and functionally annotating all available genomes using an identical pipeline, which both increased gene completeness and allowed for a high functional annotation rate. This improved and consistently annotated gene set will allow for a better comparison between tea genomes. We used this improved pangenome to capture the core and dispensable gene repertoire, elucidating the functional diversity present within the tea species. This pangenome resource might serve as a valuable resource for understanding the fundamental genetic basis of traits such as flavour, stress tolerance, and disease resistance, with implications for tea breeding programmes.
Collapse
Affiliation(s)
- Arslan Tariq
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Minghui Meng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anthony Bolger
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Sebastian Beier
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Jan P Buchmann
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Björn Usadel
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| |
Collapse
|
3
|
Ijaz S, Ul Haq I, Habib Z, Muti-Ullah, Afzal I, Khan NA, Abdullah. Genome-wide identification, and gene expression analysis of NBS-LRR domain containing R genes in Chenopodium quinoa for unveiling the dynamic contribution in plant immunity against Cercospora cf. chenopodii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1129-1144. [PMID: 39100881 PMCID: PMC11291812 DOI: 10.1007/s12298-024-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 08/06/2024]
Abstract
The plant R genes encode the NLR proteins comprising nucleotide-binding sites (NBS) and variable-length C-terminal leucine-rich repeat domains. The proteins act as intracellular immune receptors and recognize effector proteins of phytopathogens, which convene virulence. Among stresses, diseases contribute majorly to yield loss in crop plants, and R genes confer disease resistance against phytopathogens. We investigated the NLRome of Chenopodium quinoa for intraspecific diversity, characterization, and contribution to immune response regulation against phytopathogens. One eighty-three NBS proteins were identified and grouped into four distinct classes. Exon-intron organization displayed discrimination in gene structure patterns among NLR proteins. Thirty-eight NBS proteins revealed ontology with defense response, ADP binding, and inter alia cellular components. These proteins had shown functional homology with disease-resistance proteins involved in the plant-pathogen interaction pathway. Likewise, expression analysis demonstrated that NLRs encoding genes showed differential expression patterns. However, most genes displayed high expression levels in plant defense response with varying magnitude compared to ADP binding and cellular components. Twenty-four NBS genes were selected based on Heatmap analysis for quantitative polymerase chain reaction under Cercospora disease stress, and their progressive expression pattern provides insights into their functional role under stress conditions. The protein-protein interaction analysis revealed functional enrichment of NLR proteins in regulating hypersensitive, immune, and stress responses. This study, the first to identify and characterize NBS genes in C. quinoa, reveals their contribution to disease response and divulges their dynamic involvement in inducing plant immunity against phytopathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01475-0.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Muti-Ullah
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Nasir Ahmad Khan
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Abdullah
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
4
|
Cao YL, Chen YY, Li YL, Li CI, Lin ST, Lee BR, Hsieh CL, Hsiao YY, Fan YF, Luo Q, Zhao JH, Yin Y, An W, Shi ZG, Chow CN, Chang WC, Huang CL, Chang WH, Liu ZJ, Wu WS, Tsai WC. Wolfberry genome database: integrated genomic datasets for studying molecular biology. FRONTIERS IN PLANT SCIENCE 2024; 15:1310346. [PMID: 38444537 PMCID: PMC10912414 DOI: 10.3389/fpls.2024.1310346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.
Collapse
Affiliation(s)
- You-Long Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - You-Yi Chen
- Department of Agronomy, National Chiayi University, Chiaiyi, Taiwan
| | - Yan-Long Li
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Chung-I Li
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Ting Lin
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Bing-Ru Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Lin Hsieh
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Fang Fan
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qing Luo
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jian-Hua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zhi-Gang Shi
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Chi-Nga Chow
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Lin Huang
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Wei-Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, Collage of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Douliu, Taiwan
| | - Zhong-Jian Liu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Delorean EE, Youngblood RC, Simpson SA, Schoonmaker AN, Scheffler BE, Rutter WB, Hulse-Kemp AM. Representing true plant genomes: haplotype-resolved hybrid pepper genome with trio-binning. FRONTIERS IN PLANT SCIENCE 2023; 14:1184112. [PMID: 38034563 PMCID: PMC10687446 DOI: 10.3389/fpls.2023.1184112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
As sequencing costs decrease and availability of high fidelity long-read sequencing increases, generating experiment specific de novo genome assemblies becomes feasible. In many crop species, obtaining the genome of a hybrid or heterozygous individual is necessary for systems that do not tolerate inbreeding or for investigating important biological questions, such as hybrid vigor. However, most genome assembly methods that have been used in plants result in a merged single sequence representation that is not a true biologically accurate representation of either haplotype within a diploid individual. The resulting genome assembly is often fragmented and exhibits a mosaic of the two haplotypes, referred to as haplotype-switching. Important haplotype level information, such as causal mutations and structural variation is therefore lost causing difficulties in interpreting downstream analyses. To overcome this challenge, we have applied a method developed for animal genome assembly called trio-binning to an intra-specific hybrid of chili pepper (Capsicum annuum L. cv. HDA149 x Capsicum annuum L. cv. HDA330). We tested all currently available softwares for performing trio-binning, combined with multiple scaffolding technologies including Bionano to determine the optimal method of producing the best haplotype-resolved assembly. Ultimately, we produced highly contiguous biologically true haplotype-resolved genome assemblies for each parent, with scaffold N50s of 266.0 Mb and 281.3 Mb, with 99.6% and 99.8% positioned into chromosomes respectively. The assemblies captured 3.10 Gb and 3.12 Gb of the estimated 3.5 Gb chili pepper genome size. These assemblies represent the complete genome structure of the intraspecific hybrid, as well as the two parental genomes, and show measurable improvements over the currently available reference genomes. Our manuscript provides a valuable guide on how to apply trio-binning to other plant genomes.
Collapse
Affiliation(s)
- Emily E. Delorean
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Ramey C. Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| | - Sheron A. Simpson
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Stoneville, MS, United States
| | - Ashley N. Schoonmaker
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Stoneville, MS, United States
| | - William B. Rutter
- US Vegetable Laboratory, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Charleston, SC, United States
| | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Mokhtar MM, El Allali A. MegaLTR: a web server and standalone pipeline for detecting and annotating LTR-retrotransposons in plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1237426. [PMID: 37810401 PMCID: PMC10552921 DOI: 10.3389/fpls.2023.1237426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023]
Abstract
LTR-retrotransposons (LTR-RTs) are a class of RNA-replicating transposon elements (TEs) that can alter genome structure and function by moving positions, repositioning genes, shifting exons, and causing chromosomal rearrangements. LTR-RTs are widespread in many plant genomes and constitute a significant portion of the genome. Their movement and activity in eukaryotic genomes can provide insight into genome evolution and gene function, especially when LTR-RTs are located near or within genes. Building the redundant and non-redundant LTR-RTs libraries and their annotations for species lacking this resource requires extensive bioinformatics pipelines and expensive computing power to analyze large amounts of genomic data. This increases the need for online services that provide computational resources with minimal overhead and maximum efficiency. Here, we present MegaLTR as a web server and standalone pipeline that detects intact LTR-RTs at the whole-genome level and integrates multiple tools for structure-based, homologybased, and de novo identification, classification, annotation, insertion time determination, and LTR-RT gene chimera analysis. MegaLTR also provides statistical analysis and visualization with multiple tools and can be used to accelerate plant species discovery and assist breeding programs in their efforts to improve genomic resources. We hope that the development of online services such as MegaLTR, which can analyze large amounts of genomic data, will become increasingly important for the automated detection and annotation of LTR-RT elements.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
7
|
Singh A, Mahato AK, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, Kumar S, Gupta V, Singh K, Singh R. Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1203855. [PMID: 37448872 PMCID: PMC10337998 DOI: 10.3389/fpls.2023.1203855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Amaranth (Amaranthus L.) is native to Mexico and North America, where it was cultivated thousands of years ago, but now amaranth is grown worldwide. Amaranth is one of the most promising food crops with high nutritional value and belongs to the family Amaranthaceae. The high-quality genome assembly of cultivated amaranth species (A. hypochondriacus, A. cruentus) and wild/weedy species (A. tuberculatus, A. hybridus, and A. palmeri) has already been reported; therefore, we developed an Amaranth Genomic Resource Database (AGRDB) to provide access to all the genomic information such as genes, SSRs, SNPs, TFs, miRNAs, and transporters in one place. The AGRDB database contains functionally annotated gene information with their sequence details, genic as well as genomic SSRs with their three sets of primers, transcription factors classified into different families with their sequence information and annotation details, putative miRNAs with their family, sequences, and targeted gene details, transporter genes with their superfamily, trans-membrane domain details, and details of genic as well as nongenic SNPs with 3' and 5' flanking sequence information of five amaranth species. A database search can be performed using the gene ID, sequence ID, sequence motif, motif repeat, family name, annotation keyword, scaffold or chromosome numbers, etc. This resource also includes some useful tools, including JBrowse for the visualization of genes, SSRs, SNPs, and TFs on the respective amaranth genomes and BLAST search to perform a BLAST search of the user's query sequence against the amaranth genome as well as protein sequences. The AGRDB database will serve as a potential platform for genetic improvement and characterization of this futuristic crop. The AGRDB database will be accessible via the link: http://www.nbpgr.ernet.in:8080/AmaranthGRD/.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - A. K. Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. K. Kaushik
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sandeep Kumar
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Veena Gupta
- Division of Germplasm Conservation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
8
|
Alsamman AM, Mousa KH, Nassar AE, Faheem MM, Radwan KH, Adly MH, Hussein A, Istanbuli T, Mokhtar MM, Elakkad TA, Kehel Z, Hamwieh A, Abdelsattar M, El Allali A. Identification, characterization, and validation of NBS-encoding genes in grass pea. Front Genet 2023; 14:1187597. [PMID: 37408775 PMCID: PMC10318170 DOI: 10.3389/fgene.2023.1187597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 μM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mostafa M. Faheem
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H. Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tamer Ahmed Elakkad
- Department of Genetics and Genetic Engineering, Faculty of Agriculture at Moshtohor, Benha University, Benha, Egypt
- Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|