1
|
Lee J, Kang YJ, Park H, Shim S, Ha J, Lee T, Kim MY, Lee SH. Unraveling the maternal and paternal origins of allotetraploid Vigna reflexo-pilosa. Sci Rep 2023; 13:22951. [PMID: 38135720 PMCID: PMC10746702 DOI: 10.1038/s41598-023-49908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.
Collapse
Affiliation(s)
- Jayern Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- , Macrogen, Seoul, Republic of Korea
| | - Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science Department at, Gyeongsang National University, Jinju, Republic of Korea
| | - Halim Park
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | | | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Abstract
Flow cytometry and sorting represents a valuable and mature experimental platform for the analysis of cellular populations. Applications involving higher plants started to emerge around 40 years ago and are now widely employed both to provide unique information regarding basic and applied questions in the biosciences and to advance agricultural productivity in practical ways. Further development of this platform is being actively pursued, and this promises additional progress in our understanding of the interactions of cells within complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types held together by tough cell walls, and, second, because individual plant cells are generally larger than those of mammals.This chapter, which updates work last reviewed in 2014 [Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509-537], describes the application of techniques of flow cytometry and sorting to the model plant species Arabidopsis thaliana, in particular emphasizing (a) fluorescence labeling in vivo of specific cell types and of subcellular components, (b) analysis using both conventional cytometers and spectral analyzers, (c) fluorescence-activated sorting of protoplasts and nuclei, and (d) transcriptome analyses using sorted protoplasts and nuclei, focusing on population analyses at the level of single protoplasts and nuclei. Since this is an update, details of new experimental methods are emphasized.
Collapse
Affiliation(s)
- David W Galbraith
- University of Arizona, School of Plant Sciences and Bio5 Institute, Tucson, AZ, USA. .,Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China.
| | - Guiling Sun
- Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China
| |
Collapse
|
3
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Sassone AB, López A, Hojsgaard DH, Giussani LM. A novel indicator of karyotype evolution in the tribe Leucocoryneae (Allioideae, Amaryllidaceae). JOURNAL OF PLANT RESEARCH 2018; 131:211-223. [PMID: 29075953 DOI: 10.1007/s10265-017-0987-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The tribe Leucocoryneae is taxonomically and cytogenetically complex, mainly due to its extraordinary morphological and karyological variation. Robertsonian translocations had long been recognized as a central factor contributing to karyotype diversity within the Leucocoryneae, but so far no major tendency prevailing on the observed complexity of karyotype formula among species has been identified. The assessment of nuclear DNA contents by flow cytometry using propidium iodide in 23 species, representing all genera within the tribe, showed a monoploid genome size variation of 1Cx = 9.07-30.46 pg denoting a threefolds fluctuation. A highly significant linear association between the average DNA content per chromosome arm (2C/FN) and the monoploid genome size (1Cx) is reported for the first time and identified as a novel indicator of a trend governing karyotype diversity within Leucocoryneae. This trend shows that a reduction in DNA content per chromosome arm is influencing and has shaped karyotype evolution of different monophyletic groups within the tribe despite the complex karyotype diversity and apparently contrasting patterns of genome sizes.
Collapse
Affiliation(s)
- Agostina B Sassone
- Instituto de Botánica Darwinion. CONICET-ANCFEN, Labardén 200, CC 22, San Isidro, B1642HYD, Buenos Aires, Argentina.
| | - Alicia López
- Instituto de Botánica Darwinion. CONICET-ANCFEN, Labardén 200, CC 22, San Isidro, B1642HYD, Buenos Aires, Argentina
| | - Diego H Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Liliana M Giussani
- Instituto de Botánica Darwinion. CONICET-ANCFEN, Labardén 200, CC 22, San Isidro, B1642HYD, Buenos Aires, Argentina
| |
Collapse
|
5
|
Briskine RV, Paape T, Shimizu-Inatsugi R, Nishiyama T, Akama S, Sese J, Shimizu KK. Genome assembly and annotation ofArabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology. Mol Ecol Resour 2016; 17:1025-1036. [DOI: 10.1111/1755-0998.12604] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Roman V. Briskine
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research Center; Kanazawa University; 13-1 Takara-machi Kanazawa 920-0934 Japan
| | - Satoru Akama
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Jun Sese
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 Zurich CH-8057 Switzerland
- Kihara Institute for Biological Research; Yokohama City University; 642-12 Maioka Totsuka-ward Yokohama 244-0813 Japan
| |
Collapse
|
6
|
Shi FX, Li MR, Li YL, Jiang P, Zhang C, Pan YZ, Liu B, Xiao HX, Li LF. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC PLANT BIOLOGY 2015; 15:297. [PMID: 26690782 PMCID: PMC4687065 DOI: 10.1186/s12870-015-0669-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/23/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Panax L. is a medicinally important genus within family Araliaceae, where almost all species are of cultural significance for traditional Chinese medicine. Previous studies suggested two independent origins of the East Asia and North America disjunct distribution of this genus and multiple rounds of whole genome duplications (WGDs) might have occurred during the evolutionary process. RESULTS We employed multiple chloroplast and nuclear markers to investigate the evolution and diversification of Panax. Our phylogenetic analyses confirmed previous observations of the independent origins of disjunct distribution and both ancient and recent WGDs have occurred within Panax. The estimations of divergence time implied that the ancient WGD might have occurred before the establishment of Panax. Thereafter, at least two independent recent WGD events have occurred within Panax, one of which has led to the formation of three geographically isolated tetraploid species P. ginseng, P. japonicus and P. quinquefolius. Population genetic analyses showed that the diploid species P. notoginseng harbored significantly lower nucleotide diversity than those of the two tetraploid species P. ginseng and P. quinquefolius and the three species showed distinct nucleotide variation patterns at exon regions. CONCLUSION Our findings based on the phylogenetic and population genetic analyses, coupled with the species distribution patterns of Panax, suggested that the two rounds of WGD along with the geographic and ecological isolations might have together contributed to the evolution and diversification of this genus.
Collapse
Affiliation(s)
- Feng-Xue Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Ming-Rui Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Ya-Ling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Cui Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Yue-Zhi Pan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Hong-Xing Xiao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
7
|
Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 2014; 14:224. [PMID: 25344686 PMCID: PMC4216345 DOI: 10.1186/s12862-014-0224-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| | - Roswitha Schmickl
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, Cheng-Kung University, Tainan, Taiwan.
| | - Magdalena Lučanová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Filip Kolář
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Karol Marhold
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Institute of Botany Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-845 23, Slovakia.
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| |
Collapse
|