1
|
Chen Z, Liu T, Luan J. Oral Administration of Lutein Improves Fat Graft Survival by Alleviating Oxidative Stress in Mice. Aesthet Surg J 2024; 44:NP906-NP921. [PMID: 39178377 DOI: 10.1093/asj/sjae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Oxidative stress induced by ischemia and hypoxia in fat transplantation is a major obstacle to graft retention. Previous studies have shown that lutein has excellent adipose tissue affinity and antioxidative stress ability, however, the effects of oral lutein on fat transplantation have not yet been studied. OBJECTIVES We aimed to investigate whether oral lutein could improve fat transplantation retention by regulating oxidative stress, apoptosis, and inflammatory cytokine levels in graft tissues. METHODS Nude mice were assigned to the control group (normal saline), low-dose lutein group (10 mg/kg/day), and high-dose lutein group (20 mg/kg/day) randomly. All mice received treatment by gavage 1 week before fat grafting and continued for 2 weeks. The grafts were collected 1, 2, and 12 weeks after treatment. By conducting histological analyses, Western blotting, quantitative polymerase chain reaction and cell metabolic function detection, the regulatory effects of lutein on apoptosis and oxidative stress in grafts were demonstrated. Additionally, RNA sequencing was conducted to further clarify the efficacy of lutein on fat grafting. RESULTS Lutein induced superior graft retention, histological structures, and more viable adipocytes than the control group. It relieved tissue oxidative stress and lipid oxidative damage by decreasing reactive oxygen species and significantly reduced inflammation and apoptosis of grafts. RNA sequencing analysis confirmed that lutein could downregulate the gene expression of oxidative stress and related inflammation and apoptosis. CONCLUSIONS Our study suggests that oral administration of lutein can improve fat graft survival by reducing the levels of oxidative stress, inflammation, and apoptosis in grafted fat.
Collapse
|
2
|
Li H, Li Z, Zhang X, Lin Y, Zhang T, Gan L, Mu D. The effect of exogenous mitochondria in enhancing the survival and volume retention of transplanted fat tissue in a nude mice model. Stem Cell Res Ther 2024; 15:321. [PMID: 39334429 PMCID: PMC11438222 DOI: 10.1186/s13287-024-03938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the pivotal role of fat grafting in plastic, reconstructive, and aesthetic surgery, inconsistent survival rates of transplanted adipose tissue, primarily due to early ischemic and hypoxic insults, remain a significant challenge. The infusion of healthy mitochondria has emerged as a promising intervention to support tissue recovery from ischemic, hypoxic, and other types of damages across various organ systems. OBJECTIVES This study aims to evaluate the impact of supplementing human adipose tissue grafts with healthy exogenous mitochondria on their volume and mass retention rates when transplanted into the subcutaneous layers of nude mice. This approach seeks to improve and optimize fat grafting techniques. METHODS Human adipose tissues were preconditioned with exogenous mitochondria (10 µg/mL), a combination of exogenous mitochondria and the inhibitor Dyngo-4a, Dyngo-4a alone, or PBS, and then transplanted into the subcutaneous tissue of 24 nude mice. Samples were harvested at 1 and 3 months post-transplantation for analysis of mass and volume retention. The structural morphology and integrity of the adipose tissues were assessed using Hematoxylin and Eosin (H&E) staining. RESULTS Mitochondrial preconditioning significantly enhanced the retention of mass and volume in fat grafts, demonstrating superior structural morphology and integrity compared to the control group. CONCLUSIONS This study highlights the potential of exogenous mitochondrial augmentation in fat transplantation to significantly improve fat graft survival, thereby optimizing the success of fat grafting procedures.
Collapse
Affiliation(s)
- Haoran Li
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zhengyao Li
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Xiaoyu Zhang
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Lin
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Tongtong Zhang
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Leijuan Gan
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Department of Breast Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
3
|
Carr H, Asaad M, Wu Y, Branch-Brooks C, Zhang Q, Hematti P, Hanson SE. Differential Secretomes of Processed Adipose Grafts, the Stromal Vascular Fraction, and Adipose-Derived Stem Cells. Stem Cells Dev 2024; 33:477-483. [PMID: 39030836 DOI: 10.1089/scd.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024] Open
Abstract
There are multiple methods to prepare lipoaspirate for autologous fat transfer; however, graft retention remains unpredictable. The purpose of this study was to compare the cellular and protein composition of adipose grafts and the stromal vascular fraction (SVF) resulting from three common techniques to prepare adipose grafts. Adipose grafts were harvested from healthy donors and processed via three techniques: centrifugation (C), a single-filter (SF) device, and a double-filtration (DF) system. Part of each graft was analyzed or further processed to isolate the SVF. Cell viability, surface markers, cytokine, and growth factors were compared between the graft and SVF as well as adipose-derived stem cells (ASCs). Overall, we found variations across the three processing techniques and among the graft components (ASCs, SVF, and fat). Cell viability within the grafts was similar (94.6%, 92.3%, and 93.6%; P = 0.93). The trend was a greater percentage of ASCs from SF versus DF or centrifugation (6.95%, 4.63%, and 1.93%, respectively, P = 0.06). Adipogenic markers (adiponectin and leptin) were similar among all three grafts (P = 0.45). Markers of tissue remodeling were greatest in the SVF compared with fat and ASCs, regardless of processing technique. There was higher relative expression of MMP-9 (2×), Extracellular matrix metalloproteinase inducer (EMMPRIN) (2.5×), endoglin (5×), and IL-8 (1.5×) in the SVF (P < 0.005). Our study identified differences in cytokine expression in adipose grafts and the SVF, particularly in cytokines important in inflammation and wound healing. These secretomes may impact graft retention and fat necrosis and have the potential implications in cell-assisted lipotransfer. There were no significant differences between the final products of any of the processing techniques.
Collapse
Affiliation(s)
- Hannah Carr
- Medicine and Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Malke Asaad
- MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Yewen Wu
- MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | - Qixu Zhang
- MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - Peiman Hematti
- The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Summer E Hanson
- Medicine and Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Trovato F, Ceccarelli S, Michelini S, Vespasiani G, Guida S, Galadari HI, Nisticò SP, Colonna L, Pellacani G. Advancements in Regenerative Medicine for Aesthetic Dermatology: A Comprehensive Review and Future Trends. COSMETICS 2024; 11:49. [DOI: 10.3390/cosmetics11020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The growing interest in maintaining a youthful appearance has encouraged an accelerated development of innovative, minimally invasive aesthetic treatments for facial rejuvenation and regeneration. The close correlation between tissue repair, regeneration, and aging has paved the way for the application of regenerative medicine principles in cosmetic dermatology. The theoretical substrates of regenerative medicine applications in dermo-aesthetics are plentiful. However, regenerative dermatology is an emerging field and needs more data and in vivo trials to reach a consensus on the standardization of methods. In this review, we summarize the principles of regenerative medicine and techniques as they apply to cosmetic dermatology, suggesting unexplored fields and future directions.
Collapse
Affiliation(s)
- Federica Trovato
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefano Ceccarelli
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Simone Michelini
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Giordano Vespasiani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Stefania Guida
- Dermatology Department, Vita-Salute San Raffaele University, Via Olgettina n. 60, 20132 Milano, Italy
| | - Hassan Ibrahim Galadari
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Steven Paul Nisticò
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| | - Laura Colonna
- Dermatology Unit, Istituto Dermopatico dell’Immacolata IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00165 Rome, Italy
| |
Collapse
|
6
|
Zhang H, Zhou M, Wang Y, Zhang D, Qi B, Yu A. Role of Autologous Fat Transplantation Combined with Negative-Pressure Wound Therapy in Treating Rat Diabetic Wounds. Plast Reconstr Surg 2023; 152:561-570. [PMID: 36727776 DOI: 10.1097/prs.0000000000010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Negative-pressure wound therapy (NPWT) and autologous fat transplantation (AFT) are two clinical modalities for plastic and reconstructive surgery. At present, there are few reports on the combination of these two methods in treating diabetic wounds. This study aimed to explore the effect of this combined therapy on diabetic wound healing. METHODS Full-thickness dorsal cutaneous wounds in rats with streptozotocin-induced diabetes were treated with either NPWT, AFT, or combined therapy. Rats covered with commercial dressings served as the control group. Macroscopic healing kinetics were examined. The levels of inflammation-related factors, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), monocyte chemoattractant protein-1, arginase-1, and inducible nitric oxide synthase (iNOS) and angiogenesis-related factors such as vascular endothelial growth factor, were measured in the wound tissues on days 3, 7, and 14; immunohistochemical staining for arginase-1, iNOS, and CD31 was performed on days 3, 7, and 14. The length of reepithelialization was investigated on day 14. RESULTS The combined therapy promoted faster wound healing than the other treatments. The expression levels of the proinflammatory factors IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and iNOS were reduced, and arginase-1 expression was increased compared with those in the other groups. The expression levels of vascular endothelial growth factor and CD31 in the NPWT-combined-with-AFT group were significantly higher than those in the other groups. Reepithelialization was faster in the NPWT-combined-with-AFT group (by day 14) than in the other groups. CONCLUSION Combining NPWT and AFT can enhance diabetic wound healing by improving wound inflammation and increasing wound vascularization. CLINICAL RELEVANCE STATEMENT The authors designed a randomized controlled trial of diabetic rats to confirm that NPWT can enhance the vascularization and improve inflammation of the diabetic wound after the autologous fat transplantation treatment. This article may provide a new idea for treating diabetic wounds.
Collapse
Affiliation(s)
- Hao Zhang
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| | - Min Zhou
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| | - Yu Wang
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| | - Dong Zhang
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| | - Baiwen Qi
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| | - Aixi Yu
- From the Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University
| |
Collapse
|
7
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 PMCID: PMC10295516 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
| | | | - Summer E. Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
8
|
Dang J, Yu Z, Wang T, Jiao Y, Wang K, Dou W, Yi C, Song B. Effects of Melatonin on Fat Graft Retention Through Browning of Adipose Tissue and Alternative Macrophage Polarization. Aesthetic Plast Surg 2023:10.1007/s00266-022-03242-6. [PMID: 36633654 DOI: 10.1007/s00266-022-03242-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Melatonin is a widely used drug that can affect adipocyte inflammation, resulting in adipose tissue browning. Inducing the browning of white fat and changing the inflammatory microenvironment of early transplanted fat have positive effects on the retention rate of fat grafts. This study aimed to evaluate the effects of melatonin on fat graft retention, determine whether it is related to adipose tissue browning and the inflammatory microenvironment, and explore the underlying mechanisms. METHODS A C57BL/6 mice fat transplantation model was established. The mice were divided into a control group (ethanol), a high-dose group (40 mg/kg/day melatonin), a medium-dose group (20 mg/kg/day melatonin), and a low-dose group (10 mg/kg/day melatonin). They were also given oral gavage treatment for 2 weeks. The grafted fat was collected 2, 4, and 12 weeks after treatment. RESULTS The medium-dose and high-dose melatonin groups had significantly higher fat graft retention rates than the control group at 12 weeks. The medium-dose melatonin group had smaller multilocular adipocytes, which enhanced the expression of uncoupling protein 1 and increased neovascularization in the grafted fat. The medium-dose group also had a higher distribution of M2 macrophages. CONCLUSIONS These findings suggest that melatonin administration can improve the retention of fat grafts through polarization of macrophages toward the anti-inflammatory type and induction of adipose tissue browning. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Juanli Dang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tong Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Jiao
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjie Dou
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenggang Yi
- Department of Plastic Surgery, Medical School, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Li B, Quan Y, He Y, He Y, Lu F, Liao Y, Cai J. A Preliminary Exploratory Study of Autologous Fat Transplantation in Breast Augmentation With Different Fat Transplantation Planes. Front Surg 2022; 9:895674. [PMID: 35756478 PMCID: PMC9226395 DOI: 10.3389/fsurg.2022.895674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background Autologous fat transfer is common in breast augmentationor reconstruction. However, AFG recipient site in the breast for fat grafting has not been carefully investigated. Methods Forty female patients requiring breast augmentation with fat grafting were randomly assigned into two groups. The retromammary group received 2/3 fat into the retromammary space and the other 1/3 into the subcutaneous and retropectoral planes. The retropectoral group received 2/3 fat into the retropectoral plane and the other 1/3 into the subcutaneous and retromammary planes. The fat grafting result at 6 months was assessed by 3D laser surface scanning and then ultrasound. Any complications were recorded during follow-up. Samples from a patient who underwent fat grafting for 6 months was obtained and histological examination was conducted. Results No significant difference in the retention rate after 6 months was observed between the two groups (retromammary group: 35.9% ± 6.6; retropectoral group: 39.3% ± 5.1, p = 0.1076). The retromammary grouphad a higher incidence of oil cyst formation than the retropectoral group. Histological examination showed that there were more oil cysts and mac2 positive macrophage infiltration in the fat cells in retromammary group, while retropectoral group had more small-size adipocytes. Conclusion Although fat grafting into the retropectoral plane did not provide a superior fat graft retention rate, it did lower the incidence of complications. The retropectoral space show great potential to become a favorable recipient site.
Collapse
|
10
|
Hanson SE. Response to: Additional Thoughts on the Future of Fat Grafting. Aesthet Surg J 2022; 42:NP85-NP86. [PMID: 34605543 DOI: 10.1093/asj/sjab349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Summer E Hanson
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|
11
|
Caviggioli F, Agnelli B, Murolo M, Siliprandi M, Bozzo G, Vinci V. Additional Thoughts on the Future of Fat Grafting. Aesthet Surg J 2022; 42:NP83-NP84. [PMID: 34324629 DOI: 10.1093/asj/sjab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Fabio Caviggioli
- University of Milan, Reconstructive and Aesthetic Plastic Surgery School, MultiMedica Holding S.p.A., Plastic Surgery Unit, Sesto San Giovanni (Milan), Milan, Italy
| | - Benedetta Agnelli
- Humanitas University Department of Biomedical Sciences, Milan, Italy
| | - Matteo Murolo
- Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
| | | | - Giulia Bozzo
- Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
| | - Valeriano Vinci
- Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
12
|
Hanson SE. Commentary on: The Effect of Different Diameters of Fat Converters on Adipose Tissue and Its Cellular Components: Selection for Preparation of Nanofat. Aesthet Surg J 2021; 41:NP1745-NP1746. [PMID: 34291280 DOI: 10.1093/asj/sjab295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Summer E Hanson
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|