1
|
Okazaki S, Komatsu A, Nakano M, Taguchi G, Shimosaka M. A novel endo-type chitinase possessing chitobiase activity derived from the chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T. Biosci Biotechnol Biochem 2023; 87:1543-1550. [PMID: 37715302 DOI: 10.1093/bbb/zbad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
One of the chitinases (ChiG) derived from the chitinolytic bacterium Chitiniphilus shinanonensis SAY3T exhibited chitobiase activity cleaving dimers of N-acetyl-D-glucosamine (GlcNAc) into monomers, which is not detected in typical endo-type chitinases. Analysis of the reaction products for GlcNAc hexamers revealed that all the five internal glycosidic bonds were cleaved at the initial stage. The overall reaction catalyzed by chitobiases toward GlcNAc dimers was similar to that catalyzed by N-acetyl-D-glucosaminidases (NAGs). SAY3 possesses two NAGs (ChiI and ChiT) that are thought to be important in chitin catabolism. Unexpectedly, a triple gene-disrupted mutant (ΔchiIΔchiTΔchiG) was still able to grow on synthetic medium containing GlcNAc dimers or powdered chitin, similar to the wild-type SAY3, although it exhibited only 3% of total cellular NAG activity compared to the wild-type. This indicates the presence of unidentified enzyme(s) capable of supporting normal bacterial growth on the chitin medium by NAG activity compensation.
Collapse
Affiliation(s)
- Sayaka Okazaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akane Komatsu
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| |
Collapse
|
2
|
Sato H, Sonoda N, Nakano M, Matsuyama Y, Shizume A, Arai R, Nogawa M, Taguchi G, Shimosaka M. Multi-enzyme Machinery for Chitin Degradation in the Chitinolytic Bacterium Chitiniphilus shinanonensis SAY3 T. Curr Microbiol 2023; 80:360. [PMID: 37796346 DOI: 10.1007/s00284-023-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2023] [Indexed: 10/06/2023]
Abstract
The chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed. These include sixteen endo-type chitinases, two N-acetylglucosaminidases, and one lipopolysaccharide monooxygenase that catalyzes the oxidative cleavage of glycosidic bonds. Among the 16 chitinases, ChiL was characterized by its remarkable transglycosylation activity. Of the two N-acetylglucosaminidases (ChiI and ChiT), ChiI was the major enzyme, corresponding to > 98% of the total cellular activity. Surprisingly, a chiI-disrupted mutant was still able to grow on medium with powdered chitin or GlcNAc dimer. However, its growth rate was slightly lower compared to that of the wild-type SAY3. This multi-enzyme machinery composed of various types of chitinolytic enzymes may support SAY3 to efficiently utilize native chitin as a carbon and energy source and may play a role in developing an enzymatic process to decompose and utilize abundant chitin at the industrial scale.
Collapse
Affiliation(s)
- Hiroaki Sato
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Norie Sonoda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yuka Matsuyama
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Arisa Shizume
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Masahiro Nogawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
3
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Huang H, Zheng Z, Zou X, Wang Z, Gao R, Zhu J, Hu Y, Bao S. Genome Analysis of a Novel Polysaccharide-Degrading Bacterium Paenibacillus algicola and Determination of Alginate Lyases. Mar Drugs 2022; 20:md20060388. [PMID: 35736191 PMCID: PMC9227215 DOI: 10.3390/md20060388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant putative enzymes involved in the degradation of polysaccharides were identified, such as alginate lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity 152 U/mL at 50 °C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 °C. The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL) analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production and provide insights into its potential applications in the degradation of polysaccharides such as alginate.
Collapse
Affiliation(s)
- Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zhiguo Zheng
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Xiaoxiao Zou
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zixu Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Rong Gao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- College of Oceanography, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Jun Zhu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| | - Shixiang Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| |
Collapse
|
5
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-42. [DOI: 10.1007/978-3-030-83783-9_72-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|