1
|
Víquez-R L, Henrich M, Riegel V, Bader M, Wilhelm K, Heurich M, Sommer S. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. Anim Microbiome 2024; 6:28. [PMID: 38745212 PMCID: PMC11094858 DOI: 10.1186/s42523-024-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays a crucial role in the health and well-being of animals. It is especially critical for ruminants that depend on this bacterial community for digesting their food. In this study, we investigated the effects of management conditions and supplemental feeding on the gut bacterial microbiota of red deer (Cervus elaphus) in the Bavarian Forest National Park, Germany. Fecal samples were collected from free-ranging deer, deer within winter enclosures, and deer in permanent enclosures. The samples were analyzed by high-throughput sequencing of the 16 S rRNA gene. The results showed that the gut bacterial microbiota differed in diversity, abundance, and heterogeneity within and between the various management groups. Free-ranging deer exhibited lower alpha diversity compared with deer in enclosures, probably because of the food supplementation available to the animals within the enclosures. Free-living individuals also showed the highest beta diversity, indicating greater variability in foraging grounds and plant species selection. Moreover, free-ranging deer had the lowest abundance of potentially pathogenic bacterial taxa, suggesting a healthier gut microbiome. Winter-gated deer, which spent some time in enclosures, exhibited intermediate characteristics between free-ranging and all-year-gated deer. These findings suggest that the winter enclosure management strategy, including supplementary feeding with processed plants and crops, has a significant impact on the gut microbiome composition of red deer. Overall, this study provides important insights into the effects of management conditions, particularly winter enclosure practices, on the gut microbiome of red deer. Understanding these effects is crucial for assessing the potential health implications of management strategies and highlights the value of microbiota investigations as health marker.
Collapse
Affiliation(s)
- Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
- Department of Biology, Bucknell University, Lewisburg, PA, USA.
| | - Maik Henrich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Vanessa Riegel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marvin Bader
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
- Albert-Ludwigs University, Freiburg, Baden-Württemberg, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, NO-34, Norway
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
2
|
Zong X, Wang T, Skidmore AK, Heurich M. Habitat visibility affects the behavioral response of a large herbivore to human disturbance in forest landscapes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119244. [PMID: 37864942 DOI: 10.1016/j.jenvman.2023.119244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Wildlife can perceive humans as predators and human disturbance, whether lethal (e.g., hunting) or non-lethal (e.g., hiking, biking, and skiing), triggers antipredator behavior among prey. Visibility is the property that relates habitat structure to accessibility of visual information that allows animals to detect predators and evaluate predation risk. Thus, the visibility of a habitat (hereafter referred to as habitat visibility) for prey species alters the perceived risk of predation and therefore has a strong influence on their antipredator behavior. Yet, knowledge of how habitat visibility affects the response of animals to different types of human disturbance is limited, partly, because it is challenging to measure habitat visibility for animals at a fine spatial scale over a landscape, particularly in highly heterogeneous landscapes (e.g., forests). In this study, we employed a newly described approach that combines terrestrial and airborne LiDAR to contiguously measure fine-scale habitat visibility in a forested landscape. We applied the LiDAR-derived habitat visibility to examine how habitat visibility in forests affects the summer space use of 20 GPS-collared female red deer (Cervus elaphus) modeled with integrated step-selection functions in the Bavarian Forest National Park, Germany when exposed to various types of human disturbance including recreational activities, forest roads, hiking trails, and hunting. We found that red deer in our study area avoided areas with higher all types of human disturbance, especially during daylight hours. Furthermore, habitat visibility significantly modified the use of space by red deer in response to human recreational activities, forest roads, and hiking trails, but not to the hunting area. Red deer tended to tolerate a higher intensity of human recreational activities and to use areas closer to forest roads or hiking trails when they have lower habitat visibility (i.e., more cover). Our findings highlight the importance of considering visual perception when studying the response of wild animals to human disturbance. We emphasize the potential to mitigate negative consequences of human disturbance on wildlife, through measures such as maintaining vegetative buffers around recreational infrastructure (e.g., roads and skiing tracks) in order to reduce habitat visibility around areas frequented by humans.
Collapse
Affiliation(s)
- Xin Zong
- School of Forestry, Northeast Forestry University, Harbin, China; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands.
| | - Tiejun Wang
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands.
| | - Andrew K Skidmore
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands; Department of Environmental Science, Macquarie University, Sydney, Australia.
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Germany; Chair of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany; Institute for Forestry and Wildlife Management, Inland Norway University of Applied Science, Koppang, Norway.
| |
Collapse
|
3
|
Wójcicki A, Borowski Z. The presence of wolves leads to spatial differentiation in deer browsing pressure on forest regeneration. Sci Rep 2023; 13:17245. [PMID: 37821647 PMCID: PMC10567790 DOI: 10.1038/s41598-023-44502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
With the recent return of large carnivores to forest ecosystems, an important issue for forest owners and managers is how large predators influence the behaviour of their natural prey and, consequently, cervid browsing pressure on forest regeneration. To investigate this issue, we analysed deer pressure on Scots pine and European beech plantations in northern Poland's ecosystems with and without permanent wolf populations. Two characteristics were used to describe deer browsing patterns in plantations: distance from the forest edge (spatial pattern of browsing) and number of saplings browsed (browsing intensity). Beech saplings were more intensively browsed by deer compared to pine saplings. In a forest ecosystem not inhabited by wolves, spatial variation in browsing patterns on small-sized beech plantations was the same between the edge and the center. In contrast, browsing pressure by deer was greater at the edges on large-sized pine plantations. The presence of wolves reduced deer browsing on beech and increased browsing on pine saplings. In addition, deer foraging behaviour changed in large-sized pine plantations, and browsing pressure increased only in the central areas of the plantations. We assume that the presence of wolves in a forest landscape is an important factor that alters browsing pressure on the youngest stands and their spatial pattern, and that this may be a major factor in stand regeneration, especially in small forest patches.
Collapse
Affiliation(s)
- Adam Wójcicki
- Department of Mountain Forests, Forest Research Institute, Ul. Fredry 39, 30-605, Kraków, Poland.
| | - Zbigniew Borowski
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Poland
| |
Collapse
|
4
|
Lundgren EJ, Ramp D, Middleton OS, Wooster EIF, Kusch E, Balisi M, Ripple WJ, Hasselerharm CD, Sanchez JN, Mills M, Wallach AD. A novel trophic cascade between cougars and feral donkeys shapes desert wetlands. J Anim Ecol 2022; 91:2348-2357. [PMID: 35871769 PMCID: PMC10087508 DOI: 10.1111/1365-2656.13766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Introduced large herbivores have partly filled ecological gaps formed in the late Pleistocene, when many of the Earth's megafauna were driven extinct. However, extant predators are generally considered incapable of exerting top-down influences on introduced megafauna, leading to unusually strong disturbance and herbivory relative to native herbivores. We report on the first documented predation of juvenile feral donkeys Equus africanus asinus by cougars Puma concolor in the Mojave and Sonoran Deserts of North America. We then investigated how cougar predation corresponds with differences in feral donkey behaviour and associated effects on desert wetlands. Focusing on a feral donkey population in the Death Valley National Park, we used camera traps and vegetation surveys to compare donkey activity patterns and impacts between wetlands with and without cougar predation. Donkeys were primarily diurnal at wetlands with cougar predation, thereby avoiding cougars. However, donkeys were active throughout the day and night at sites without predation. Donkeys were ~87% less active (measured as hours of activity a day) at wetlands with predation (p < 0.0001). Sites with predation had reduced donkey disturbance and herbivory, including ~46% fewer access trails, 43% less trampled bare ground and 192% more canopy cover (PERMANOVA, R2 = 0.22, p = 0.0003). Our study is the first to reveal a trophic cascade involving cougars, feral equids and vegetation. Cougar predation appears to rewire an ancient food web, with diverse implications for modern ecosystems. Our results suggest that protecting apex predators could have important implications for the ecological effects of introduced megafauna.
Collapse
Affiliation(s)
- Erick J Lundgren
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark.,Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, Australia
| | | | - Eamonn I F Wooster
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, Australia
| | - Erik Kusch
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Mairin Balisi
- La Brea Tar Pits and Museum, Los Angeles, California, USA.,Raymond M. Alf Museum of Paleontology, Claremont, CA, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Chris D Hasselerharm
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jessica N Sanchez
- One Health Institute, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - Mystyn Mills
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Arian D Wallach
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
5
|
Instance segmentation and tracking of animals in wildlife videos: SWIFT - segmentation with filtering of tracklets. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Weiss F, Michler FU, Gillich B, Tillmann J, Ciuti S, Heurich M, Rieger S. Displacement Effects of Conservation Grazing on Red Deer (Cervus elaphus) Spatial Behaviour. ENVIRONMENTAL MANAGEMENT 2022; 70:763-779. [PMID: 35994055 PMCID: PMC9519651 DOI: 10.1007/s00267-022-01697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Conservation grazing uses semi-feral or domesticated herbivores to limit encroachment in open areas and to promote biodiversity. However, we are still unaware of its effects on wild herbivores. This study investigates the influence of herded sheep and goats on red deer (Cervus elaphus) spatial behavior by testing three a-priori hypotheses: (i) red deer are expected to avoid areas used by livestock, as well as adjacent areas, when livestock are present, albeit (ii) red deer increase the use of these areas when sheep and goats are temporarily absent and (iii) there is a time-lagged disruption in red deer spatial behavior when conservation grazing practice ends. Using GPS-telemetry data on red deer from a German heathland area, we modelled their use of areas grazed by sheep and goats, using mixed-effect logistic regression. Additionally, we developed seasonal resource selection functions (use-availability design) to depict habitat selection by red deer before, during, and after conservation grazing. Red deer used areas less during conservation grazing throughout all times of the day and there was no compensatory use during nighttime. This effect mostly persisted within 21 days after conservation grazing. Effects on habitat selection of red deer were detectable up to 3000 meters away from the conservation grazing sites, with no signs of either habituation or adaption. For the first time, we demonstrate that conservation grazing can affect the spatio-temporal behavior of wild herbivores. Our findings are relevant for optimizing landscape and wildlife management when conservation grazing is used in areas where wild herbivores are present.
Collapse
Affiliation(s)
- Fabio Weiss
- Biosphere Reserves Institute, Eberswalde University for Sustainable Development, Eberswalde, Germany.
- Department Wildlife Ecology and Management, University of Freiburg, Breisgau, Germany.
- Department of Wildlife Biology, Wildlife Management and Hunting Practice, Eberswalde University for Sustainable Development, Eberswalde, Germany.
| | - Frank Uwe Michler
- Department of Wildlife Biology, Wildlife Management and Hunting Practice, Eberswalde University for Sustainable Development, Eberswalde, Germany
| | - Benjamin Gillich
- Department of Wildlife Biology, Wildlife Management and Hunting Practice, Eberswalde University for Sustainable Development, Eberswalde, Germany
- Institute of Zoology, University of Hamburg, Hamburg, Germany
| | | | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, SBES, University College Dublin, Dublin, Ireland
| | - Marco Heurich
- Department Wildlife Ecology and Management, University of Freiburg, Breisgau, Germany
- Department of Conservation and Research, Bavarian Forest National Park, Bavaria, Germany
- Institute for Forest and Wildlife Management, Inland Norway University for Applied Science, Hamar, Norway
| | - Siegfried Rieger
- Biosphere Reserves Institute, Eberswalde University for Sustainable Development, Eberswalde, Germany
- Department of Wildlife Biology, Wildlife Management and Hunting Practice, Eberswalde University for Sustainable Development, Eberswalde, Germany
| |
Collapse
|
7
|
Sunde P, Böcker F, Rauset GR, Kjellander P, Chrenkova M, Skovdal TM, van Beeck Calkoen S, Mayer M, Heurich M. Mammal responses to predator scents across multiple study areas. Ecosphere 2022. [DOI: 10.1002/ecs2.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Peter Sunde
- Department of Ecoscience—Wildlife Ecology Aarhus University Aarhus Denmark
| | - Felix Böcker
- Department of Forest and Society Forest Research Institute Baden‐Württemberg Freiburg Germany
| | - Geir Rune Rauset
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Science Riddarhyttan Sweden
- Norwegian Institute for Nature Research Trondheim Norway
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Science Riddarhyttan Sweden
| | - Monika Chrenkova
- Department of Zoology, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - Suzanne van Beeck Calkoen
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Wildlife Ecology and Management University of Freiburg Freiburg Germany
| | - Martin Mayer
- Department of Ecoscience—Wildlife Ecology Aarhus University Aarhus Denmark
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Wildlife Ecology and Management University of Freiburg Freiburg Germany
- Institute for Forest and Wildlife Management Inland Norway University of Applied Sciences Koppang Norway
| |
Collapse
|
8
|
Blossey B, Hare D. Myths, Wishful Thinking, and Accountability in Predator Conservation and Management in the United States. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.881483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large predators are thought of as ecological keystone species, posterchildren of conservation campaigns, and sought-after targets of tourists and photographers. At the same time, predators kill livestock and huntable animals, and occasionally people, triggering fears and antipathy among those living alongside them. Until the 1960’s government-sponsored eradication and persecution campaigns in the United States prioritized interests of livestock producers and recreational hunters, leading to eradication of wolves and bears over much of their range. Without large predators, subsidized by changes in agricultural practices and milder winters, ungulate populations erupted, triggering negative ecological impacts, economic damage, and human health crises (such as tick-borne diseases). Shifting societal preferences have ushered in more predator-friendly, but controversial wildlife policies, from passively allowing range expansion to purposeful reintroductions (such as release of wolves in Yellowstone National Park). Attempts to restore wolves or mountain lions in the U.S. and protecting coyotes appear to enjoy strong public support, but many state wildlife agencies charged with managing wildlife, and recreational hunters continue to oppose such efforts, because they perceive predators as competitors for huntable animals. There may be compelling reasons for restoring predators or allowing them to recolonize their former ranges. But if range expansion or intentional releases of large predators do not result in ecosystem recovery, reduced deer populations, or Lyme disease reductions, conservationists who have put their reputation on the line and assured decision makers and the public of the important functional role of large predators may lose public standing and trust. Exaggerated predictions by ranchers and recreational hunters of greatly reduced ungulate populations and rampant livestock killing by large carnivores may lead to poaching and illegal killing threatening recovery of predator populations. How the return of large carnivores may affect vegetation and successional change, ungulate population size, other biota, livestock and human attitudes in different landscapes has not been appropriately assessed. Societal support and acceptance of living alongside predators as they expand their range and increase in abundance requires development and monitoring of social, ecological and economic indicators to assess how return of large predators affects human and animal and plant livelihoods.
Collapse
|
9
|
van Beeck Calkoen STS, Deis MH, Oeser J, Kuijper DPJ, Heurich M. Humans rather than Eurasian lynx (
Lynx lynx
) shape ungulate browsing patterns in a temperate forest. Ecosphere 2022. [DOI: 10.1002/ecs2.3931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Suzanne T. S. van Beeck Calkoen
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Department of Wildlife Ecology and Management Albert Ludwigs University Freiburg Freiburg Germany
| | - Michele H. Deis
- Forest Research Institute of Baden‐Württemberg Freiburg Germany
| | - Julian Oeser
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | | | - Marco Heurich
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Department of Wildlife Ecology and Management Albert Ludwigs University Freiburg Freiburg Germany
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Koppang Norway
| |
Collapse
|
10
|
Kirkland H, Hare D, Daniels M, Krofel M, Rao S, Chapman T, Blossey B. Successful Deer Management in Scotland Requires Less Conflict Not More. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.770303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
What would successful deer management look like in Scotland? To some, flourishing populations of native wild deer represent success. But to others, negative impacts such as damage to woodlands and peatlands, agricultural and forestry losses, deer-vehicle collisions, and facilitating Lyme disease spread represent failure. Conflicting interests and incentives among people involved in deer management mean a common definition of success, and therefore clear management targets, remain elusive. While some environmental groups urgently call for an increase in the number of deer culled (shot) each year, other stakeholders aim to maximize deer numbers. Overcoming this governance failure will require clearly articulated, scientifically valid, and socially acceptable socio-ecological objectives to be co-produced by a broad range of stakeholders. Systematic monitoring of deer impacts will also be needed to evaluate the ability of specific management interventions to achieve defined objectives. Reintroducing Eurasian lynx (Lynx lynx) has been suggested as a means to reduce deer numbers and their negative ecological and socioeconomic impacts. However, evidence of lynx impacts on deer numbers, deer impacts, and social conflicts over deer suggest lynx reintroduction alone would not effectively reduce negative impacts of deer in Scotland, though it could be part of a broader solution. In the short-term, achieving sustainable numbers of deer in Scotland will require a substantial increase in the number of deer culled and effective changes to the way deer management is incentivized, regulated, implemented, and monitored.
Collapse
|
11
|
van Beeck Calkoen STS, Kreikenbohm R, Kuijper DPJ, Heurich M. Olfactory cues of large carnivores modify red deer behavior and browsing intensity. Behav Ecol 2021; 32:982-992. [PMID: 34690549 PMCID: PMC8528536 DOI: 10.1093/beheco/arab071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
This study examined the effect of perceived predation risk imposed by lynx (Lynx lynx) and wolf (Canis lupus) on red deer (Cervus elaphus) foraging behavior under experimental conditions. We hypothesized that in response to large carnivore scent red deer would increase their vigilance, although reducing the frequency and duration of visits to foraging sites. Consequently, browsing intensity on tree saplings was expected to decrease, whereas a higher proportion of more preferred species was expected to be browsed to compensate for higher foraging costs. We expected stronger responses towards the ambush predator lynx, compared with the cursorial predator wolf. These hypotheses were tested in a cafeteria experiment conducted within three red deer enclosures, each containing four experimental plots with olfactory cues of wolf, lynx, cow, and water as control. On each plot, a camera trap was placed and browsing intensity was measured for one consecutive week, repeated three times. Red deer reduced their visitation duration and browsing intensity on plots with large carnivore scent. Despite red deer showing a clear preference for certain tree species, the presence of large carnivore scent did not change selectivity towards different tree species. Contrary to our hypothesis, we found more pronounced effects of wolf (cursorial) compared with lynx (ambush). This study is the first to experimentally assess the perceived risk effects on the red deer foraging behavior of large carnivores differing in hunting modes. Our findings provide insights into the role of olfactory cues in predator-prey interactions and how they can modify fine-scale herbivore-plant interactions.
Collapse
Affiliation(s)
- Suzanne T S van Beeck Calkoen
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Freyunger Straβe 2, Grafenau, Germany
- Chair of Wildlife Ecology and Management, Albert Ludwigs University Freiburg, Tennenbacher Straβe 4, Freiburg, Germany
| | - Rebekka Kreikenbohm
- Department of wildlife sciences, Faculty of Forest Sciences, Georg-August University Göttingen, Buesgenweg 3, Göttingen, Germany
- Faculty of Geoscience and Geography, Georg-August University Göttingen, Goldschmidtstr. 3, Göttingen, Germany
| | - Dries P J Kuijper
- Mammal Research Institute Polish Academy of Sciences, Stoczek 1, 17–230, Białowieza, Poland
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Freyunger Straβe 2, Grafenau, Germany
- Chair of Wildlife Ecology and Management, Albert Ludwigs University Freiburg, Tennenbacher Straβe 4, Freiburg, Germany
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Koppang, Norway
| |
Collapse
|