1
|
Yoon GR, Bozai A, Porteus CS. Could future ocean acidification be affecting the energy budgets of marine fish? CONSERVATION PHYSIOLOGY 2024; 12:coae069. [PMID: 39381802 PMCID: PMC11459383 DOI: 10.1093/conphys/coae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
With the unprecedented environmental changes caused by climate change including ocean acidification, it has become crucial to understand the responses and adaptive capacity of fish to better predict directional changes in the ecological landscape of the future. We conducted a systematic literature review to examine if simulated ocean acidification (sOA) could influence growth and reproduction in fish within the dynamic energy budget theory framework. As such, we chose to examine metabolic rate, locomotion, food assimilation and growth in early life stages (i.e. larvae and juvenile) and adults. Our goal was to evaluate if acclimatization to sOA has any directional changes in these traits and to explore potential implications for energetic trade-offs in these for growth and reproduction. We found that sOA had negligible effects on energetic expenditure for maintenance and aerobic metabolism due to the robust physiological capacity regulating acid-base and ion perturbations but substantive effects on locomotion, food assimilation and growth. We demonstrated evidence that sOA significantly reduced growth performance of fish in early life stages, which may have resulted from reduced food intake and digestion efficiency. Also, our results showed that sOA may enhance reproduction with increased numbers of offspring although this may come at the cost of altered reproductive behaviours or offspring fitness. While these results indicate evidence for changes in energy budgets because of physiological acclimatization to sOA, the heterogeneity of results in the literature suggests that physiological and neural mechanisms need to be clearly elucidated in future studies. Lastly, most studies on sOA have been conducted on early life stages, which necessitates that more studies should be conducted on adults to understand reproductive success and thus better predict cohort and population dynamics under ongoing climate change.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
- School of Marine and Environmental Programs, University of New England, 11 Hills Beach Road, Biddeford, Maine, 04005, USA
| | - Arsheen Bozai
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
2
|
Spatafora D, Quattrocchi F, Cattano C, Badalamenti F, Milazzo M. Nest guarding behaviour of a temperate wrasse differs between sites off Mediterranean CO 2 seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149376. [PMID: 34375865 DOI: 10.1016/j.scitotenv.2021.149376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Organisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity). Ocean acidification (OA), resulting from anthropogenic emissions of carbon dioxide (CO2), is predicted to impair sensory function and behaviour of fish. However, reproductive behaviours, and parental care in particular, and their role in mediating responses to OA are presently overlooked. Here, we assessed whether the nesting male ocellated wrasse Symphodus ocellatus from sites with different CO2 concentrations showed different behaviours during their breeding season. We also investigated potential re-allocation of the time-budget towards different behavioural activities between sites. We measured the time period that the nesting male spent carrying out parental care, mating and exploring activities, as well as changes in the time allocation between sites at ambient (~400 μatm) and high CO2 concentrations (~1000 μatm). Whilst the behavioural connectance (i.e., the number of linkages among different behaviours relative to the total amount of linkages) was unaffected, we observed a significant reduction in the time spent on parental care behaviour, and a significant decrease in the guarding activity of fish at the high CO2 sites, with a proportional re-allocation of the time budget in favour of courting and wandering around, which however did not change between sites. This study shows behavioural differences in wild fish living off volcanic CO2 seeps that could be linked to different OA levels, suggesting that behavioural plasticity may potentially act as a mechanism for buffering the effects of ongoing environmental change. A reallocation of the time budget between key behaviours may play a fundamental role in determining which marine organisms are thriving under projected OA.
Collapse
Affiliation(s)
- Davide Spatafora
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy.
| | - Federico Quattrocchi
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council CNR, Mazara del Vallo, TP, Italy
| | - Carlo Cattano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149 Palermo, Italy
| | - Fabio Badalamenti
- CNR-IAS, Institute for the study of Anthropic Impacts and Sustainability of the Marine Environment, Via G. da Verrazzano 17, 91014 Castellammare del Golfo, TP, Italy
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Schunter C, Jarrold MD, Munday PL, Ravasi T. Diel pCO 2 fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Mol Ecol 2021; 30:5105-5118. [PMID: 34402113 DOI: 10.1111/mec.16124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Environmental partial pressure of CO2 (pCO2 ) variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental pCO2 fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel cycle of pCO2 . To evaluate the effects on the brain molecular response, we exposed two common reef fishes (Acanthochromis polyacanthus and Amphiprion percula) to two projected future pCO2 levels (750 and 1,000 µatm) under both stable and diel fluctuating conditions. We found a common signature to stable elevated pCO2 for both species, which included the downregulation of immediate early genes, indicating lower brain activity. The transcriptional programme was more strongly affected by higher average pCO2 in a stable treatment than for fluctuating treatments, but the largest difference in molecular response was between stable and fluctuating pCO2 treatments. This indicates that a response to a change in environmental pCO2 conditions is different for organisms living in a fluctuating than in stable environments. This differential regulation was related to steroid hormones and circadian rhythm (CR). Both species exhibited a marked difference in the expression of CR genes among pCO2 treatments, possibly accommodating a more flexible adaptive approach in the response to environmental changes. Our results suggest that environmental pCO2 fluctuations might enable reef fishes to phase-shift their clocks and anticipate pCO2 changes, thereby avoiding impairments and more successfully adjust to ocean acidification conditions.
Collapse
Affiliation(s)
- Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Michael D Jarrold
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Dougherty LR. Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based. Nat Ecol Evol 2021; 5:688-699. [PMID: 33723423 DOI: 10.1038/s41559-021-01409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Animals often need to signal to attract mates and behavioural signalling may impose substantial energetic and fitness costs to signallers. Consequently, individuals often strategically adjust signalling effort to maximize the fitness payoffs of signalling. An important determinant of these payoffs is individual state, which can influence the resources available to signallers, their likelihood of mating and their motivation to mate. However, empirical studies often find contradictory patterns of state-based signalling behaviour. For example, individuals in poor condition may signal less than those in good condition to conserve resources (ability-based signalling) or signal more to maximize short-term reproductive success (needs-based signalling). To clarify this relationship, I systematically searched for published studies examining animal sexual signalling behaviour in relation to six aspects of individual state: age, mated status, attractiveness, body size, condition and parasite load. Across 228 studies and 147 species, individuals (who were predominantly male) invested more into behavioural signalling when in good condition. Overall, this suggests that animal sexual signalling behaviour is generally honest and ability-based. However, the magnitude of state-dependent plasticity was small and there was a large amount of between-study heterogeneity that remains unexplained.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Servili A, Canario AVM, Mouchel O, Muñoz-Cueto JA. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen Comp Endocrinol 2020; 291:113439. [PMID: 32061640 DOI: 10.1016/j.ygcen.2020.113439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France.
| | - Adelino V M Canario
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Olivier Mouchel
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France
| | - José Antonio Muñoz-Cueto
- Faculty of Marine and Environmental Sciences, INMAR, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3) and European University of the Seas (SEA-EU), E11510 Puerto Real, Spain
| |
Collapse
|
6
|
Faria AM, Lopes AF, Silva CSE, Novais SC, Lemos MFL, Gonçalves EJ. Reproductive trade-offs in a temperate reef fish under high pCO 2 levels. MARINE ENVIRONMENTAL RESEARCH 2018; 137:8-15. [PMID: 29500051 DOI: 10.1016/j.marenvres.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Fishes are currently facing novel types of anthropogenic stressors that have never experienced in their evolutionary history, such as ocean acidification. Under these stressful conditions, energetically costly processes, such as reproduction, may be sacrificed for increased chances of survival. This trade-off does not only affect the organism itself but may result in reduced offspring fitness. In the present study, the effects of exposure to high pCO2 levels were tested on the reproductive performance of a temperate species, the two-spotted goby, Gobiusculus flavescens. Breeding pairs were kept under control (∼600 μatm, pH∼ 8.05) and high pCO2 levels (∼2300 μatm, pH∼ 7.60) conditions for a 4-month period. Additionally, oxidative stress and energy metabolism-related biomarkers were measured. Results suggest that reproductive activity is stimulated under high pCO2 levels. Parental pairs in the simulated ocean acidification conditions exhibited increased reproductive output, with 50% more clutches and 44% more eggs per clutch than pairs under control conditions. However, there was an apparent trade-off between offspring number and size, as larvae of parental pairs under high pCO2 levels hatched significantly smaller, suggesting differences in parental provisioning, which could be related to the fact that these females produce more eggs. Moreover, results support the hypothesis of different energy allocation strategies used by females under high pCO2 conditions. These changes might, ultimately, affect individual fitness and population replenishment.
Collapse
Affiliation(s)
- A M Faria
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal.
| | - A F Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal
| | - C S E Silva
- MARE -Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - S C Novais
- MARE -Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal; Department of Ecological Science, Vrije University, Amsterdam, The Netherlands
| | - M F L Lemos
- MARE -Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Portugal
| | - E J Gonçalves
- MARE - Marine and Environmental Sciences Centre, ISPA- Instituto Universitário, Portugal
| |
Collapse
|