1
|
Vieira de Souza E, L Bookout A, Barnes CA, Miller B, Machado P, Basso LA, Bizarro CV, Saghatelian A. Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery. Nat Commun 2024; 15:6839. [PMID: 39122697 PMCID: PMC11316118 DOI: 10.1038/s41467-024-50301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
There has been a dramatic increase in the identification of non-canonical translation and a significant expansion of the protein-coding genome. Among the strategies used to identify unannotated small Open Reading Frames (smORFs) that encode microproteins, Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple genomic sites are removed since they cannot be unambiguously assigned to a specific genomic location. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of multi-mapping alignments, such that smORFs residing in these regions cannot be identified by Ribo-Seq. Moreover, it has been challenging to identify protein evidence for Ribo-Seq. To solve this, we developed Rp3, a pipeline that integrates proteogenomics and Ribosome profiling to provide unambiguous evidence for a subset of microproteins missed by current Ribo-Seq pipelines. Here, we show that Rp3 maximizes proteomics detection and confidence of microprotein-encoding smORFs.
Collapse
Affiliation(s)
- Eduardo Vieira de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Tang Z, Li X, Zheng Y, Liu J, Liu C, Li X. The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets. Front Cell Dev Biol 2024; 12:1341999. [PMID: 38357004 PMCID: PMC10864455 DOI: 10.3389/fcell.2024.1341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Xue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfeng Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Zhou F, Tan P, Liu S, Chang L, Yang J, Sun M, Guo Y, Si Y, Wang D, Yu J, Ma Y. Subcellular RNA distribution and its change during human embryonic stem cell differentiation. Stem Cell Reports 2024; 19:126-140. [PMID: 38134924 PMCID: PMC10828685 DOI: 10.1016/j.stemcr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The spatial localization of RNA within cells is closely related to its function and also involved in cell fate determination. However, the atlas of RNA distribution within cells and dynamic changes during the developmental process are largely unknown. In this study, five subcellular components, including cytoplasmic extract, membrane extract, soluble nuclear extract, chromatin-bound nuclear extract, and cytoskeletal extract, were isolated and the rules of subcellular RNA distribution in human embryonic stem cells (hESCs) and its change during hESC differentiation are summarized for the first time. The overall distribution patterns of coding and non-coding RNAs are revealed. Interestingly, some developmental genes are found to be transcribed but confined to the chromatin in undifferentiated hESC. Unexpectedly, alternative splicing and polyadenylation endow spatial heterogeneity among different isoforms of the same gene. Finally, the dynamic pattern of RNA distribution during hESC differentiation is characterized, which provides new clues for a comprehensive understanding hESC pluripotency and differentiation.
Collapse
Affiliation(s)
- Fanqi Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiabin Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuehong Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Pappalardo XG, Risiglione P, Zinghirino F, Ostuni A, Luciano D, Bisaccia F, De Pinto V, Guarino F, Messina A. Human VDAC pseudogenes: an emerging role for VDAC1P8 pseudogene in acute myeloid leukemia. Biol Res 2023; 56:33. [PMID: 37344914 DOI: 10.1186/s40659-023-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Pierpaolo Risiglione
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Daniela Luciano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy
| | - Angela Messina
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy.
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy.
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy.
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
5
|
Guo M, Yuan C, Tao L, Cai Y, Zhang W. Life barcoded by DNA barcodes. CONSERV GENET RESOUR 2022; 14:351-365. [PMID: 35991367 PMCID: PMC9377290 DOI: 10.1007/s12686-022-01291-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/05/2022] [Indexed: 11/15/2022]
Abstract
The modern concept of DNA-based barcoding for cataloguing biodiversity was proposed in 2003 by first adopting an approximately 600 bp fragment of the mitochondrial COI gene to compare via nucleotide alignments with known sequences from specimens previously identified by taxonomists. Other standardized regions meeting barcoding criteria then are also evolving as DNA barcodes for fast, reliable and inexpensive assessment of species composition across all forms of life, including animals, plants, fungi, bacteria and other microorganisms. Consequently, global DNA barcoding campaigns have resulted in the formation of many online workbenches and databases, such as BOLD system, as barcode references, and facilitated the development of mini-barcodes and metabarcoding strategies as important extensions of barcode techniques. Here we intend to give an overview of the characteristics and features of these barcode markers and major reference libraries existing for barcoding the planet’s life, as well as to address the limitations and opportunities of DNA barcodes to an increasingly broader community of science and society.
Collapse
|
6
|
Shaheen J, Mudd AB, Diekwisch TGH, Abramyan J. Pseudogenized Amelogenin Reveals Early Tooth Loss in True Toads (Anura: Bufonidae). Integr Comp Biol 2021; 61:1933-1945. [PMID: 33905504 PMCID: PMC8699095 DOI: 10.1093/icb/icab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extant anurans (frogs and toads) exhibit reduced dentition, ranging from a lack of mandibular teeth to complete edentulation, as observed in the true toads of the family Bufonidae. The evolutionary time line of these reductions remains vague due to a poor fossil record. Previous studies have demonstrated an association between the lack of teeth in edentulous vertebrates and the pseudogenization of the major tooth enamel gene amelogenin (AMEL) through accumulation of deleterious mutations and the disruption of its coding sequence. In this study, we have harnessed the pseudogenization of AMEL as a molecular dating tool to correlate loss of dentition with genomic mutation patterns during the rise of the family Bufonidae. Specifically, we have utilized AMEL pseudogenes in three members of the family as a tool to estimate the putative date of edentulation in true toads. Comparison of AMEL sequences from Rhinella marina, Bufo gargarizans and Bufo bufo, with nine extant, dentulous frogs, revealed mutations confirming AMEL inactivation in Bufonidae. AMEL pseudogenes in modern bufonids also exhibited remarkably high 86-93% sequence identity among each other, with only a slight increase in substitution rate and relaxation of selective pressure, in comparison with functional copies in other anurans. Moreover, using selection intensity estimates and synonymous substitution rates, analysis of functional and pseudogenized AMEL resulted in an estimated inactivation window of 46-60 million years ago in the lineage leading to modern true toads, a time line that coincides with the rise of the family Bufonidae.
Collapse
Affiliation(s)
- John Shaheen
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Thomas G H Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, TX 75246, USA
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA
| |
Collapse
|
7
|
Pseudogenes: Four Decades of Discovery. Methods Mol Biol 2021. [PMID: 34165705 DOI: 10.1007/978-1-0716-1503-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
A pseudogene is defined as a genomic DNA sequence that looks like a mutated or truncated version of a known functional gene. Nearly four decades since their first discovery it has been estimated that between ~12,000 and ~20,000 pseudogenes exist in the human genome. Early efforts to characterize functions for pseudogenes were unsuccessful, thus they were considered functionless relics of evolutionary selection, junk DNA or genetic fossils. Remarkably, an increasing number of pseudogenes have been reported to be expressed as RNA transcripts above and beyond levels considered accidental or spurious transcription. There is emerging evidence that some expressed pseudogene transcripts have biological functions and should be defined as a subclass of functional long noncoding RNAs (lncRNA). In this introductory chapter, I briefly summarize the history and the current knowledge of pseudogenes, and highlight the emerging functions of some pseudogenes in human biology and disease. This second iteration of Pseudogenes in Methods in Molecular Biology highlights new methodological approaches to investigate this intriguing family of lncRNAs and the extent of their biological function.
Collapse
|
8
|
Tian L, Wang SL. Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200711171530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Recently, ample researches show that microRNAs (miRNAs) not only
interact with coding genes but interact with a pool of different RNAs. Those RNAs are called
miRNA sponges, including long non-coding RNAs (lncRNAs), circular RNA, pseudogenes and
various messenger RNAs. Understanding regulatory networks of miRNA sponges can better help
researchers to study the mechanisms of breast cancers.
Objective:
We develop a new method to explore miRNA sponge networks of breast cancer by combining miRNAdisease-lncRNA and miRNA-target networks (MSNMDL).
Method:
Firstly, MSNMDL infers miRNA-lncRNA functional similarity networks from miRNAdisease-
lncRNA networks. Secondly, MSNMDL forms lncRNA-target networks by using lncRNA
to replace the role of matched miRNA in miRNA-target networks according to the lncRNA-miRNA
pair of miRNA-lncRNA functional similarity networks. And MSNMDL only retains the genes of
breast cancer in lncRNA-target networks to construct candidate miRNA sponge networks. Thirdly,
MSNMDL merges these candidate miRNA sponge networks with other miRNA sponge interactions
and then selects top-hub lncRNA and its interactions to construct miRNA sponge networks.
Results:
MSNMDL is superior to other methods in terms of biological significance and its identified modules might
act as module signatures for prognostication of breast cancer.
Conclusion:
MiRNA sponge networks identified by MSNMDL are biologically significant and are
closely associated with breast cancer, which makes MSNMDL a promising way for researchers to
study the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Lei Tian
- School of Information Science and Engineering, Hunan University, Changsha, China
| | - Shu-Lin Wang
- School of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
9
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Mascagni F, Usai G, Cavallini A, Porceddu A. Structural characterization and duplication modes of pseudogenes in plants. Sci Rep 2021; 11:5292. [PMID: 33674668 PMCID: PMC7935947 DOI: 10.1038/s41598-021-84778-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
We identified and characterized the pseudogene complements of five plant species: four dicots (Arabidopsis thaliana, Vitis vinifera, Populus trichocarpa and Phaseolus vulgaris) and one monocot (Oryza sativa). Retroposition was considered of modest importance for pseudogene formation in all investigated species except V. vinifera, which showed an unusually high number of retro-pseudogenes in non coding genic regions. By using a pipeline for the classification of sequence duplicates in plant genomes, we compared the relative importance of whole genome, tandem, proximal, transposed and dispersed duplication modes in the pseudo and functional gene complements. Pseudogenes showed higher tendencies than functional genes to genomic dispersion. Dispersed pseudogenes were prevalently fragmented and showed high sequence divergence at flanking regions. On the contrary, those deriving from whole genome duplication were proportionally less than expected based on observations on functional loci and showed higher levels of flanking sequence conservation than dispersed pseudogenes. Pseudogenes deriving from tandem and proximal duplications were in excess compared to functional loci, probably reflecting the high evolutionary rate associated with these duplication modes in plant genomes. These data are compatible with high rates of sequence turnover at neutral sites and double strand break repairs mediated duplication mechanisms.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli studi di Sassari, Via Enrico de Nicola 1, 07100, Sassari, Italy.
| |
Collapse
|
11
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
12
|
Comprehensive analysis of LDHAP5 pseudogene expression and potential pathogenesis in ovarian serous cystadenocarcinoma. Cancer Cell Int 2020; 20:229. [PMID: 32536817 PMCID: PMC7288418 DOI: 10.1186/s12935-020-01324-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Background We aimed to identify differentially expressed pseudogenes and explore their potential functions in four types of common gynecological malignancies (e.g., cervical squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma) using bioinformatics technology. Materials and methods We identified up-regulated and down-regulated pseudogenes and built a pseudogene-miRNA-mRNA regulatory network through public datasets to explore their potential functions in carcinogenesis and cancer prognosis. Results Among the 63 up-regulated pseudogenes identified, LDHAP5 demonstrated the greatest potential as a candidate pseudogene due to its significant association with poor overall survival in ovarian serous cystadenocarcinoma. KEGG pathway analysis revealed that LDHAP5 showed significant enrichment in MicroRNAs in cancer, Pathway in cancer and PI3K-AKT signaling pathway. Further analysis revealed that EGFR was the potential target mRNA of LDHAP5, which may play an important role in ovarian serous cystadenocarcinoma. Conclusions LDHAP5 was associated with the occurrence and prognosis of ovarian serous cystadenocarcinoma, and thus shows potential as a novel therapeutic target against such cancer.
Collapse
|
13
|
Machado JP, Antunes A. The genomic context of retrocopies increases their chance of functional relevancy in mammals. Genomics 2020; 112:2410-2417. [PMID: 31981699 DOI: 10.1016/j.ygeno.2020.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Described as "junk" DNA, pseudogenes are dead structures of previously active genes present in genomes. Pseudogenes are categorized into two main classes: processed pseudogenes, formed through retrotransposition, and non-processed pseudogenes, typically originated from gene decay following duplication events. The term "processed pseudogene" has changed to "retrocopy" since they are likely to evolve new functional roles and became a retrogene. Here, we surveyed 38,080 retrocopies from chimpanzee, dog, human, mouse, and rat genomes to assess their potential adaptive value. The retrocopies inserted in the same chromosome of the parental gene have higher chances of remain potentially "active" (absence of premature stop codons and frameshifts) (~26.1%), while those placed into a different chromosome have a twofold decrease chance of continuing potentially "active" (~7.52%). The genomic context of their placement seems associated with their expression. Retrocopies placed in intragenic regions and the same sense of the "host" gene have higher chances of being expressed relative to other genomic contexts. The proximity of retrocopies to their parental gene is associated with a lower decay rate, and their location likely influence their expression. Thus, despite their unclear role, retrocopies are probably involved in adaptive processes. Our results evidence natural selection acting in retrocopies.
Collapse
Affiliation(s)
- João Paulo Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169 007 Porto, Portugal.
| |
Collapse
|
14
|
Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet 2019; 10:426. [PMID: 31134132 PMCID: PMC6514244 DOI: 10.3389/fgene.2019.00426] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.
Collapse
Affiliation(s)
- Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Eyer PA, Hefetz A. Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the Cataglyphis albicans group in Israel. J Evol Biol 2018; 31:1828-1842. [PMID: 30240036 DOI: 10.1111/jeb.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 11/27/2022]
Abstract
Assessing whether behavioural, ecological or geographical factors trigger population divergence provides key insights into the biological processes driving speciation. Recent speciation in restricted geographic area without obvious ecological barriers prompts the question of the behavioural mechanisms underlying species divergence. In this context, we investigated phylogenetic relationships in the Cataglyphis albicans desert ant complex in Israel. We first determined accurate species delimitation using two mitochondrial and six nuclear genes, as well as 11 microsatellite markers to investigate cryptic species in this group, assessing reduction in gene flow between populations. We then investigated whether different species in this group exhibit distinct reproductive strategies, inferring social structure and queen-mating frequency in each species uncovered. Our findings highlight the presence of at least six distinct Cataglyphis albicans species in the restricted range of Israel; four of them co-occur in a 50 × 50 km area in North Negev, while two are endemic from there. However, our results reveal incongruences between nuclear and mitochondrial clustering, which complicate species identification and preclude the exclusive use of mtDNA to confidently delimit species in this group. Finally, we show that the different species of the C. albicans group in Israel exhibit quite similar reproductive strategies with most of them having colonies headed by a single queen mated with several males; colonies of one species were, however, headed by several queens. Overall, this weak variation across species thereby unlikely represents the main evolutionary force behind speciation of these sympatric species. We then discuss the potential evolutionary processes that underlie speciation in this group in the absence of clear geographical or ecological barriers.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Emadi-Baygi M, Sedighi R, Nourbakhsh N, Nikpour P. Pseudogenes in gastric cancer pathogenesis: a review article. Brief Funct Genomics 2018; 16:348-360. [PMID: 28459995 DOI: 10.1093/bfgp/elx004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer burden rises globally at an alarming pace. According to GLOBOCAN 2012, gastric cancer (GC) is regarded as the fifth most common malignancy in the world. Being twice as high in men as in women, GC is the third leading cause of cancer mortality in both sexes globally. Being labeled as 'junk DNA', pseudogenes were considered as nonfunctional 'trash', which contribute nothing to survival of the organism; therefore, a number of strategies have been developed to circumvent their accidental detection. Recent progresses have confirmed that pseudogenes can have broad and multifaceted spectrum of activities in human cancers in general and GC in particular. Furthermore, the mentioned functions are parental gene-dependent and/or -independent. Therefore, pseudogenes can be regarded as the emerging class of elaborate modulators of gene expression involved in pathogenesis of human cancers including gastric adenocarcinoma.
Collapse
|
17
|
Jiang T, Guo J, Hu Z, Zhao M, Gu Z, Miao S. Identification of Potential Prostate Cancer-Related Pseudogenes Based on Competitive Endogenous RNA Network Hypothesis. Med Sci Monit 2018; 24:4213-4239. [PMID: 29923546 PMCID: PMC6042310 DOI: 10.12659/msm.910886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been revealed to function as competing endogenous RNAs (ceRNAs), which can seclude the common microRNAs (miRNAs) and hence prevent the miRNAs from binding to their ancestral gene. Nonetheless, the role of lncRNA-mediated ceRNAs in prostate cancer has not yet been elucidated. MATERIAL AND METHODS Using The Cancer Genome Atlas (TCGA) database, lncRNA, miRNA, and mRNA profiles from 499 prostate cancer tissues and 52 normal prostate tissues were analyzed with the R package "DESeq" to identify the differentially expressed RNAs. GO and KEGG pathway analyses were performed using "DAVID6.8" and R packages "Clusterprofile." The ceRNA network in prostate cancer was constructed using miRDB, miRTarBase, and TargetScan databases. Survival analysis was performed with Kaplan-Meier analysis. RESULTS A total of 376 lncRNAs, 33 miRNAs, and 687 mRNAs were identified as significant factors in tumorigenesis. Based on the hypothesis that the ceRNA network (lncRNA-miRNA-mRNA regulatory axis) is involved in prostate cancer and forms competitive interrelations between miRNA and mRNA or lncRNA, we constructed a ceRNA network that included 23 lncRNAs, 6 miRNAs, and 2 mRNAs that were differentially expressed in prostate cancer. Only 3 lncRNAs (LINC00308, LINC00355, and OSTN-AS1) had a significant association with survival (P<0.05). The 3 prostate cancer-specific lncRNA were validated in prostate cancer cell lines PC3 and DU145 using qRT-PCR. CONCLUSIONS We demonstrated the differential lncRNA expression profiles in prostate cancer, which provides new insights for future studies of the ceRNA network and its regulatory mechanisms in prostate cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Junjie Guo
- Department of Pathogenic Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhongchun Hu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Ming Zhao
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhenggang Gu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Shu Miao
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
18
|
Rosikiewicz W, Kabza M, Kosinski JG, Ciomborowska-Basheer J, Kubiak MR, Makalowska I. RetrogeneDB-a database of plant and animal retrocopies. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:3964680. [PMID: 29220443 PMCID: PMC5509963 DOI: 10.1093/database/bax038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
Abstract
For a long time, retrocopies were considered ‘junk DNA’, but numerous studies have shown that retrocopies may gain functionality and become so-called retrogenes. Retrogenes may code fully functional proteins that coexist with parental gene products or may even replace them. Retrocopies may also function as regulatory RNAs and, for example, become a source of small interfering RNAs, act as trans natural antisense transcripts or as alternative targets for miRNAs. Numerous researchers have emphasized that retrogenes play a crucial role in various organisms’ developmental stages and diseases. Despite the ever-growing evidence of the importance of retrocopies, resources dedicated to retroposition are very limited. Here, we report an update of the RetrogeneDB, which, to the best of our knowledge, is the largest database dedicated to retrocopies. It provides annotations of 86 458 retrocopies in 62 animal and 37 plant species. The database contains information about the retrocopies’ localization, open reading frame conservation, expression, RNA Polymerase II activity and the alternative transcription start site studies. Orthologous relationships between retrogenes were also determined, which made retrocopy conservation studies much more valuable. Additionally, based on the RNA-Seq data from the Geuvadis project, the expression levels of retrocopies were estimated in a total of 50 individuals from 5 human populations. The information is now presented in a new, more user-friendly web interface, with easy access to the source data, which may be used for the downstream analysis. RetrogeneDB is freely available at http://yeti.amu.edu.pl/retrogenedb. Database URL:http://yeti.amu.edu.pl/retrogenedb Secondary database URL:http://rhesus.amu.edu.pl/retrogenedb
Collapse
Affiliation(s)
- Wojciech Rosikiewicz
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Michal Kabza
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Jan G Kosinski
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Joanna Ciomborowska-Basheer
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Magdalena R Kubiak
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Izabela Makalowska
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| |
Collapse
|
19
|
Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D, Wang T, Li X. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget 2017; 7:13479-90. [PMID: 26872371 PMCID: PMC4924655 DOI: 10.18632/oncotarget.7266] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/31/2016] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs represent a majority of the human transcriptome. However, less is known about the functions and regulatory mechanisms of most non-coding species. Moreover, little is known about the potential non-coding functions of coding RNAs. The competing endogenous RNAs (ceRNAs) hypothesis is proposed recently. This hypothesis describes potential communication networks among all transcript RNA species mediated by miRNAs and miRNA-recognizing elements (MREs) within RNA transcripts. Here we review the evolution of the ceRNA hypothesis, summarize the validation experiments and discusses the significance and perspectives of this hypothesis in human cancer.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xi Liu
- Department of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, China
| | - Yinji Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Whole exome sequencing in inborn errors of immunity: use the power but mind the limits. Curr Opin Allergy Clin Immunol 2017; 17:421-430. [DOI: 10.1097/aci.0000000000000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Jang Y, Kim MA, Kim Y. Two faces of competition: target-mediated reverse signalling in microRNA and mitogen-activated protein kinase regulatory networks. IET Syst Biol 2017; 11:105-113. [PMID: 28721939 PMCID: PMC8687413 DOI: 10.1049/iet-syb.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
Biomolecular regulatory networks are organised around hubs, which can interact with a large number of targets. These targets compete with each other for access to their common hubs, but whether the effect of this competition would be significant in magnitude and in function is not clear. In this review, the authors discuss recent in vivo studies that analysed the system level retroactive effects induced by target competition in microRNA and mitogen-activated protein kinase regulatory networks. The results of these studies suggest that downstream targets can regulate the overall state of their upstream regulators, and thus cannot be ignored in analysing biomolecular networks.
Collapse
Affiliation(s)
- Yongjin Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min A Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
22
|
Eyer PA, Seltzer R, Reiner-Brodetzki T, Hefetz A. An integrative approach to untangling species delimitation in the Cataglyphis bicolor desert ant complex in Israel. Mol Phylogenet Evol 2017; 115:128-139. [PMID: 28774791 DOI: 10.1016/j.ympev.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Although extensive research has been carried out on the desert ants in the genus Cataglyphis in recent years, some of the specific intra- and interspecific relationships remain elusive. The present study disentangles the phylogenetic relationships among the C. bicolor complex in Israel using an integrative approach based on genetic markers, morphometric measurements, and chemical analyses (cuticular hydrocarbons). Several species delimitation approaches based on four nuclear, two mitochondrial, and eleven microsatellite markers, as well as 16 body measurements and 56 chemical variables, were employed to deciphering the occurrence of cryptic species in our data set. Our findings support the occurrence of at least four distinct species in the C. bicolor group in Israel, one of which may be a complex of three more recent species. The findings confirm the distinctiveness of C. isis and C. holgerseni. They attest the presence of a recently discovered species, C. israelensis, in the central mountain ridge and the occurrence of another clade distributed from the Negev to the Mediterranean coast, comprising the species C. niger, C. savignyi, and C. drusus. Although these three species are separated on the basis of mtDNA, this subgrouping was not supported by any of the nuclear sequence markers nor by the microsatellite analysis. This genetic structure may thus either reflect a possible recent speciation, or a geographical structuring of a single species. Overall, using these different sources of evidence we locate our samples within a global phylogeny of the bicolor group and discuss the processes that underlie speciation in this group.
Collapse
Affiliation(s)
- P A Eyer
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - R Seltzer
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - T Reiner-Brodetzki
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - A Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Weng W, Ni S, Wang Y, Xu M, Zhang Q, Yang Y, Wu Y, Xu Q, Qi P, Tan C, Huang D, Wei P, Huang Z, Ma Y, Zhang W, Sheng W, Du X. PTTG3P promotes gastric tumour cell proliferation and invasion and is an indicator of poor prognosis. J Cell Mol Med 2017. [PMID: 28631396 PMCID: PMC5706523 DOI: 10.1111/jcmm.13239] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudogenes play a crucial role in cancer progression. However, the role of pituitary tumour‐transforming 3, pseudogene (PTTG3P) in gastric cancer (GC) remains unknown. Here, we showed that PTTG3P expression was abnormally up‐regulated in GC tissues compared with that in normal tissues both in our 198 cases of clinical samples and the cohort from The Cancer Genome Atlas (TCGA) database. High PTTG3P expression was correlated with increased tumour size and enhanced tumour invasiveness and served as an independent negative prognostic predictor. Moreover, up‐regulation of PTTG3P in GC cells stimulated cell proliferation, migration and invasion both in vitro in cell experiments and in vivo in nude mouse models, and the pseudogene functioned independently of its parent genes. Overall, these results reveal that PTTG3P is a novel prognostic biomarker with independent oncogenic functions in GC.
Collapse
Affiliation(s)
- Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Yiqin Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Qiongyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Yusi Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Qinghua Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Zhaohui Huang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yuqing Ma
- Department of Pathology, First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Wei Zhang
- Department of Pathology, First Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Pathology, First Hospital Affiliated to Xinjiang Medical University, Urumqi, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 2017; 181:108-120. [PMID: 27810413 DOI: 10.1016/j.trsl.2016.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
More than 90% of the human genome is actively transcribed, but less than 2% of the total genome encodes protein-coding RNA, and thus, noncoding RNA (ncRNA) is a major component of the human transcriptome. Recently, ncRNA was demonstrated to play important roles in multiple biological processes by directly or indirectly interfering with gene expression, and the dysregulation of ncRNA is associated with a variety of diseases, including cancer. In this review, we summarize the function and mechanism of miRNA, long intergenic ncRNA, and some other types of ncRNAs, such as small nucleolar RNA, circular ncRNA, pseudogene RNA, and even protein-coding mRNA, in the progression of colorectal cancer (CRC). We also presented their clinical application in the diagnosis and prognosis of CRC. The summary of the current state of ncRNA in CRC will contribute to our understanding of the complex processes of CRC initiation and development and will help in the discovery of novel biomarkers and therapeutic targets for CRC diagnosis and treatment.
Collapse
|
25
|
Wang L, Zhang N, Wang Z, Ai DM, Cao ZY, Pan HP. Pseudogene PTENP1 Functions as a Competing Endogenous RNA (ceRNA) to Regulate PTEN Expression by Sponging miR-499-5p. BIOCHEMISTRY (MOSCOW) 2017; 81:739-47. [PMID: 27449620 DOI: 10.1134/s0006297916070105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence has shown that pseudogenes can widely regulate gene expression. However, little is known about the specific role of PTENP1 and miR-499-5p in insulin resistance. The relative transcription level of PTENP1 was examined in db/db mice and high fat diet (HFD)-fed mice by real-time PCR. To explore the effect of PTENP1 on insulin resistance, adenovirus overexpressing or inhibiting vectors were injected through the tail vein. Bioinformatics predictions and a luciferase reporter assay were used to explore the interaction between PTENP1 and miR-499-5p. The relative transcription level of PTENP1 was largely enhanced in db/db mice and HFD-fed mice. Furthermore, the overexpression of PTENP1 resulted in impaired Akt/GSK activation as well as glycogen synthesis, while PTENP1 inhibition led to the improved activation of Akt/GSK and enhanced glycogen contents. More importantly, PTENP1 could directly bind miR-499-5p, thereby becoming a sink for miR-499-5p. PTENP1 overexpression results in the impairment of the insulin-signaling pathway and may function as a competing endogenous RNA for miR-499-5p, thereby contributing to insulin resistance.
Collapse
Affiliation(s)
- Lei Wang
- Nanjing University of Chinese Medicine, Second Medical School, Department of Rehabilitation Medicine, Nanjing, 210023, China.
| | | | | | | | | | | |
Collapse
|
26
|
Gao L, Ren W, Zhang L, Li S, Kong X, Zhang H, Dong J, Cai G, Jin C, Zheng D, Zhi K. PTENp1, a natural sponge of miR‐21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog 2016; 56:1322-1334. [PMID: 27862321 DOI: 10.1002/mc.22594] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ling Gao
- Department of Oral Maxillofacial SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao, ShandongP. R. China
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Wenhao Ren
- Department of Oral Maxillofacial SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao, ShandongP. R. China
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Linmei Zhang
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Shaoming Li
- Department of Oral Maxillofacial SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao, ShandongP. R. China
| | - Xinjuan Kong
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdao, ShandongP. R. China
| | - Hao Zhang
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Jianwei Dong
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Guangfeng Cai
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Changxiong Jin
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Danqing Zheng
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| | - Keqian Zhi
- Department of Oral Maxillofacial SurgeryThe Affiliated Hospital of Qingdao UniversityQingdao, ShandongP. R. China
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, College of MedicineXi'an Jiaotong UniversityXi'an, ShaanxiP. R. China
| |
Collapse
|
27
|
Le TD, Zhang J, Liu L, Li J. Computational methods for identifying miRNA sponge interactions. Brief Bioinform 2016; 18:577-590. [DOI: 10.1093/bib/bbw042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 12/14/2022] Open
|
28
|
Di Sanzo M, Aversa I, Santamaria G, Gagliardi M, Panebianco M, Biamonte F, Zolea F, Faniello MC, Cuda G, Costanzo F. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation. PLoS One 2016; 11:e0151359. [PMID: 26982978 PMCID: PMC4794146 DOI: 10.1371/journal.pone.0151359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/27/2016] [Indexed: 11/18/2022] Open
Abstract
Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | | | - Mariafranca Panebianco
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
29
|
Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, Fu R, Olaru AV, An F, Popescu I, Iacob R, Dima S, Alexandrescu ST, Grigorie R, Nastase A, Berindan-Neagoe I, Tomuleasa C, Graur F, Zaharia F, Torbenson MS, Mezey E, Lu M, Selaru FM. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget 2016; 6:5666-77. [PMID: 25686840 PMCID: PMC4467393 DOI: 10.18632/oncotarget.3290] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
The complex regulation of tumor suppressive gene and its pseudogenes play key roles in the pathogenesis of hepatocellular cancer (HCC). However, the roles played by pseudogenes in the pathogenesis of HCC are still incompletely elucidated. This study identifies the putative tumor suppressor INTS6 and its pseudogene INTS6P1 in HCC through the whole genome microarray expression. Furthermore, the functional studies – include growth curves, cell death, migration assays and in vivo studies – verify the tumor suppressive roles of INTS6 and INTS6P1 in HCC. Finally, the mechanistic experiments indicate that INTS6 and INTS6P1 are reciprocally regulated through competition for oncomiR-17-5p. Taken together, these findings demonstrate INTS6P1 and INTS6 exert the tumor suppressive roles through competing for oncomiR-17-5p. Our investigation of this regulatory circuit reveals novel insights into the underlying mechanisms of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haoran Peng
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Masaharu Ishida
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Rongdang Fu
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Alexandru V Olaru
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Irinel Popescu
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Sorin T Alexandrescu
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Grigorie
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca Nastase
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Berindan-Neagoe
- Department of Immunology, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Functional Genomics, The Oncology Institute Ion Chiricuta, Cluj Napoca, Romania.,The Research Center for Functional Genomics, Biomedicine and Translational Medicine, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, The Oncology Institute Ion Chiricuta, Cluj Napoca, Romania
| | - Florin Graur
- Department of Surgery, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Surgery, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj Napoca, Romania
| | - Florin Zaharia
- Department of Surgery, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Surgery, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj Napoca, Romania
| | - Michael S Torbenson
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Esteban Mezey
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Minqiang Lu
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Lu X, Wang W, Ren W, Chai Z, Guo W, Chen R, Wang L, Zhao J, Lang Z, Fan Y, Zhao J, Zhang C. Genome-Wide Epigenetic Regulation of Gene Transcription in Maize Seeds. PLoS One 2015; 10:e0139582. [PMID: 26469520 PMCID: PMC4607434 DOI: 10.1371/journal.pone.0139582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Background Epigenetic regulation is well recognized for its importance in gene expression in organisms. DNA methylation, an important epigenetic mark, has received enormous attention in recent years as it’s a key player in many biological processes. It remains unclear how DNA methylation contributes to gene transcription regulation in maize seeds. Here, we take advantage of recent technologies to examine the genome-wide association of DNA methylation with transcription of four types of DNA sequences, including protein-coding genes, pseudogenes, transposable elements, and repeats in maize embryo and endosperm, respectively. Results The methylation in CG, CHG and CHH contexts plays different roles in the control of gene expression. Methylation around the transcription start sites and transcription stop regions of protein-coding genes is negatively correlated, but in gene bodies positively correlated, to gene expression level. The upstream regions of protein-coding genes are enriched with 24-nt siRNAs and contain high levels of CHH methylation, which is correlated to gene expression level. The analysis of sequence content within CG, CHG, or CHH contexts reveals that only CHH methylation is affected by its local sequences, which is different from Arabidopsis. Conclusions In summary, we conclude that methylation-regulated transcription varies with the types of DNA sequences, sequence contexts or parts of a specific gene in maize seeds and differs from that in other plant species. Our study helps people better understand from a genome-wide viewpoint that how transcriptional expression is controlled by DNA methylation, one of the important factors influencing transcription, and how the methylation is associated with small RNAs.
Collapse
Affiliation(s)
- Xiaoduo Lu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weixuan Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Wen Ren
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhenguang Chai
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Wenzhu Guo
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Lei Wang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jun Zhao
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Zhihong Lang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Yunliu Fan
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- * E-mail: (Jiuran Zhao); (CZ)
| | - Chunyi Zhang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081, People’s Republic of China
- * E-mail: (Jiuran Zhao); (CZ)
| |
Collapse
|
31
|
Poliseno L, Marranci A, Pandolfi PP. Pseudogenes in Human Cancer. Front Med (Lausanne) 2015; 2:68. [PMID: 26442270 PMCID: PMC4585173 DOI: 10.3389/fmed.2015.00068] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the analysis of RNA sequencing data have shown that pseudogenes are highly specific markers of cell identity and can be used as diagnostic and prognostic markers. Furthermore, genetically engineered mouse models have recently provided compelling support for a causal link between altered pseudogene expression and cancer. In this review, we discuss the most recent milestones reached in the pseudogene field and the use of pseudogenes as cancer classifiers.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori , Pisa , Italy ; Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche , Pisa , Italy
| | - Andrea Marranci
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori , Pisa , Italy ; University of Siena , Siena , Italy
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
32
|
Dai Q, Li J, Zhou K, Liang T. Competing endogenous RNA: A novel posttranscriptional regulatory dimension associated with the progression of cancer. Oncol Lett 2015; 10:2683-2690. [PMID: 26722227 DOI: 10.3892/ol.2015.3698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/07/2015] [Indexed: 12/19/2022] Open
Abstract
The existence of artificial sponges and antisense oligonucleotides designed to decrease the availability of microRNAs (miRNAs), a family of small non-coding RNAs that target RNA transcripts through miRNA response elements (MREs) involved in gene expression, suggests that miRNAs may also be regulated. The wide range of RNA transcripts harboring MREs, termed competing endogenous RNAs (ceRNAs), includes protein-coding messenger RNAs (mRNAs) and non-coding RNAs, for example long non-coding RNAs, pseudogenes and circular RNAs, which compete for a common pool of miRNAs as natural decoys. These ceRNAs are co-regulated and produce large, complex posttranscriptional regulatory networks, which have been implicated in numerous biological processes. The present review discusses recent discoveries that implicate natural microRNA decoys in the development of cancer.
Collapse
Affiliation(s)
- Qingsong Dai
- Key Laboratory for Medical Molecule Activity Research, Guangdong Medical College, Dongguan, Guangdong 523000, P.R. China ; Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523000, P.R. China
| | - Jixia Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523000, P.R. China
| | - Keyuan Zhou
- Key Laboratory for Medical Molecule Activity Research, Guangdong Medical College, Dongguan, Guangdong 523000, P.R. China
| | - Tong Liang
- Key Laboratory for Medical Molecule Activity Research, Guangdong Medical College, Dongguan, Guangdong 523000, P.R. China
| |
Collapse
|
33
|
Szydlowski L, Boschetti C, Crisp A, Barbosa E, Tunnacliffe A. Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae. Gene 2015; 566:125-37. [DOI: 10.1016/j.gene.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
34
|
Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, Arra C, Pierantoni GM, Fusco A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2015; 5:8341-54. [PMID: 25268743 PMCID: PMC4226687 DOI: 10.18632/oncotarget.2202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Grazia Petti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mara Tornincasa
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
35
|
Lloyd RE, Keatley K, Littlewood DTJ, Meunier B, Holt WV, An Q, Higgins SC, Polyzoidis S, Stephenson KF, Ashkan K, Fillmore HL, Pilkington GJ, McGeehan JE. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro Oncol 2015; 17:942-52. [PMID: 25731774 PMCID: PMC4474231 DOI: 10.1093/neuonc/nov020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/23/2015] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches.
Collapse
Affiliation(s)
- Rhiannon E Lloyd
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Kathleen Keatley
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - D Timothy J Littlewood
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Brigitte Meunier
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - William V Holt
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Qian An
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Samantha C Higgins
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Stavros Polyzoidis
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Katie F Stephenson
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Keyoumars Ashkan
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Helen L Fillmore
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| | - John E McGeehan
- Brain Tumour Research Centre (R.E.L., K.K., S.C.H., K.F.S., H.L.F., G.J.P.), Molecular Biophysics Laboratories (K.K., J.E.M.), Epigenetics and Developmental Biology Laboratories (Q.A.), Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK; Department of Life Sciences, Natural History Museum, London, UK (D.T.J.L.); Institut de Biologie Intégrative de la Cellule, Paris-Saclay University, CEA, CNRS, Université Paris-Sud, Gif sur Yvette, France (B.M.); Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK (W.V.H.); Department of Neurosurgery, Kings College Hospital, London, UK (S.P., K.A.)
| |
Collapse
|
36
|
Porter KA, Duffy EB, Nyland P, Atianand MK, Sharifi H, Harton JA. The CLRX.1/NOD24 (NLRP2P) pseudogene codes a functional negative regulator of NF-κB, pyrin-only protein 4. Genes Immun 2014; 15:392-403. [PMID: 24871464 DOI: 10.1038/gene.2014.30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
Pseudogenes are duplicated yet defunct copies of functional parent genes. However, some pseudogenes have gained or retained function. In this study, we consider a functional role for the NLRP2-related, higher primate-specific, processed pseudogene NLRP2P, which is closely related to Pyrin-only protein 2 (POP2/PYDC2), a regulator of nuclear factor-κB (NF-κB) and the inflammasome. The NLRP2P open-reading frame on chromosome X has features consistent with a processed pseudogene (retrotransposon), yet encodes a 45-amino-acid, Pyrin-domain-related protein. The open-reading frame of NLRP2P shares 80% identity with POP2 and is under purifying selection across Old World primates. Although widely expressed, NLRP2P messenger RNA is upregulated by lipopolysaccharide in human monocytic cells. Functionally, NLRP2P impairs NF-κB p65 transactivation by reducing activating phosphorylation of RelA/p65. Reminiscent of POP2, NLRP2P reduces production of the NF-κB-dependent cytokines tumor necrosis factor alpha and interleukin (IL)-6 following toll-like receptor stimulation. In contrast to POP2, NLRP2P fails to inhibit the ASC-dependent NLRP3 inflammasome. In addition, beyond regulating cytokine production, NLRP2P has a potential role in cell cycle regulation and cell death. Collectively, our findings suggest that NLRP2P is a resurrected processed pseudogene that regulates NF-κB RelA/p65 activity and thus represents the newest member of the POP family, POP4.
Collapse
Affiliation(s)
- K A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - E B Duffy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - P Nyland
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - M K Atianand
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - H Sharifi
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - J A Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
37
|
Abstract
A pseudogene arises when a gene loses the ability to produce a protein, which can be due to mutation or inaccurate duplication. Previous dogma has dictated that because the pseudogene no longer produces a protein it becomes functionless and evolutionarily inert, being neither conserved nor removed. However, recent evidence has forced a re-evaluation of this view. Some pseudogenes, although not translated into protein, are at least transcribed into RNA. In some cases, these pseudogene transcripts are capable of influencing the activity of other genes that code for proteins, thereby altering expression and in turn affecting the phenotype of the organism. In the present chapter, we will define pseudogenes, describe the evidence that they are transcribed into non-coding RNAs and outline the mechanisms by which they are able to influence the machinery of the eukaryotic cell.
Collapse
|
38
|
Abstract
As more and more systems biology approaches are used to investigate the different types of biological macromolecules, increasing numbers of whole genomic studies are now available for a large array of organisms. Whether it is genomics, transcriptomics, proteomics, interactomics or metabolomics, the full complement of genomic information on all different levels can be juxtaposed between different organisms to reveal similarities or differences, and even to provide consensus models. At the intersection of comparative genomics and systems biology lies great possibility for discovery, analysis and prediction. This paper explores this nexus and the relationship from four general levels: DNA, RNA, protein and extragenomic. For each level, we provide an overview of the methods, discuss the potential challenges and survey the current research. Finally, we suggest some organizing principles and make proposals for new areas that will be important for future research.
Collapse
Affiliation(s)
- Jimmy Lin
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
39
|
Abstract
The study of pseudogenes, originally dismissed as genomic relics of evolutionary selection, has seen a resurgence in scientific literature, in addition to being a peculiar topic of discussion in theological debates. For a long time, pseudogenes have been touted as a beacon of natural selection and a definitive proof of evolution due to the slow mutation rate that differentiated them from their parental genes and ultimately caused their genetic demise as functional genes. It now seems that "creationists" have co-opted some recent reports identifying unheralded biological functions to pseudogens and other noncoding RNAs as evidence to undermine the existence of evolution and supporting intelligent design. This issue of Methods in Molecular Biology focused on pseudogenes will certainly not end, nor enter this debate; however, scientists who are also genomics and pseudogene enthusiasts will certainly appreciate that many scientists are thinking about these particular genetic elements in new and interesting ways. With this new interest in a biological significance and "non-junk" role for pseudogenes and other noncoding RNAs, new methods and approaches are being developed to unlock the mystery of these ancient artifacts we know as pseudogenes. In this brief introductory chapter we highlight the renewed interest in pseudogenes and review a rationale for intensification of pseudogene-related research.
Collapse
|
40
|
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013; 14:16010-39. [PMID: 23912238 PMCID: PMC3759897 DOI: 10.3390/ijms140816010] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Collapse
Affiliation(s)
- Anita Quintal Gomes
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sofia Nolasco
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, 1300-666 Lisbon, Portugal
| | - Helena Soares
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Center for Chemistry and Biochemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-217-500-853; Fax: +351-217-500-088
| |
Collapse
|
41
|
Su X, Xing J, Wang Z, Chen L, Cui M, Jiang B. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res 2013. [PMID: 23592905 DOI: 10.3978/j.issn.1000-9604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are a class of endogenous, single-stranded non-coding RNAs of 20-23 nucleotides in length, functioning as negative regulators of gene expression at the post-transcriptional level. The dysregulation of miRNAs has been demonstrated to play critical roles in tumorigenesis, either through inhibiting tumor suppressor genes or activating oncogenes inappropriately. Besides their promising clinical applications in cancer diagnosis and treatment, recent studies have uncovered that miRNAs could act as a regulatory language, through which messenger RNAs, transcribed pseudogenes, and long noncoding RNAs crosstalk with each other and form a novel regulatory network. RNA transcripts involved in this network have been termed as competing endogenous RNAs (ceRNAs), since they influence each other's level by competing for the same pool of miRNAs through miRNA response elements (MREs) on their target transcripts. The discovery of miRNA-ceRNA network not only provides the possibility of an additional level of post-transcriptional regulation, but also dictates a reassessment of the existing regulatory pathways involved in cancer initiation and progression.
Collapse
Affiliation(s)
- Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | | | | | |
Collapse
|
42
|
Su X, Xing J, Wang Z, Chen L, Cui M, Jiang B. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res 2013; 25:235-9. [PMID: 23592905 DOI: 10.3978/j.issn.1000-9604.2013.03.08] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/21/2013] [Indexed: 01/27/2023] Open
Abstract
microRNAs (miRNAs) are a class of endogenous, single-stranded non-coding RNAs of 20-23 nucleotides in length, functioning as negative regulators of gene expression at the post-transcriptional level. The dysregulation of miRNAs has been demonstrated to play critical roles in tumorigenesis, either through inhibiting tumor suppressor genes or activating oncogenes inappropriately. Besides their promising clinical applications in cancer diagnosis and treatment, recent studies have uncovered that miRNAs could act as a regulatory language, through which messenger RNAs, transcribed pseudogenes, and long noncoding RNAs crosstalk with each other and form a novel regulatory network. RNA transcripts involved in this network have been termed as competing endogenous RNAs (ceRNAs), since they influence each other's level by competing for the same pool of miRNAs through miRNA response elements (MREs) on their target transcripts. The discovery of miRNA-ceRNA network not only provides the possibility of an additional level of post-transcriptional regulation, but also dictates a reassessment of the existing regulatory pathways involved in cancer initiation and progression.
Collapse
Affiliation(s)
- Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | | | | | | | | |
Collapse
|
43
|
Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J Genet Genomics 2013; 40:171-7. [PMID: 23618400 DOI: 10.1016/j.jgg.2013.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/24/2022]
Abstract
Pseudogenes are genomic remnants of ancient protein-coding genes which have lost their coding potentials through evolution. Although broadly existed, pseudogenes used to be considered as junk or relics of genomes which have not drawn enough attentions of biologists until recent years. With the broad applications of high-throughput experimental techniques, growing lines of evidence have strongly suggested that some pseudogenes possess special functions, including regulating parental gene expression and participating in the regulation of many biological processes. In this review, we summarize some basic features of pseudogenes and their functions in regulating development and diseases. All of these observations indicate that pseudogenes are not purely dead fossils of genomes, but warrant further exploration in their distribution, expression regulation and functions. A new nomenclature is desirable for the currently called 'pseudogenes' to better describe their functions.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
44
|
Lloyd RE, Foster PG, Guille M, Littlewood DTJ. Next generation sequencing and comparative analyses of Xenopus mitogenomes. BMC Genomics 2012; 13:496. [PMID: 22992290 PMCID: PMC3546946 DOI: 10.1186/1471-2164-13-496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/13/2012] [Indexed: 01/09/2023] Open
Abstract
Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus) complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1) or of multiple pooled genomes (approach 2), the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3). All protein-coding genes were shown to be under strong negative (purifying selection), with genes under the strongest pressure (Complex 4) also being the most highly expressed, highlighting their potentially crucial functions in the mitochondrial respiratory chain. Conclusions Next generation sequencing of long-PCR amplicons using single taxon or multi-taxon approaches enabled two new species of Xenopus mtDNA to be fully characterized. We anticipate our complete mitochondrial genome amplification methods to be applicable to other amphibians, helpful for identifying the most appropriate markers for differentiating species, populations and resolving phylogenies, a pressing need since amphibians are undergoing drastic global decline. Our mtDNAs also provide templates for conserved primer design and the assembly of RNA and DNA reads following high throughput “omic” techniques such as RNA- and ChIP-seq. These could help us better understand how processes such mitochondrial replication and gene expression influence xenopus growth and development, as well as how they evolved and are regulated.
Collapse
Affiliation(s)
- Rhiannon E Lloyd
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Because they are generally noncoding and thus considered nonfunctional and unimportant, pseudogenes have long been neglected. Recent advances have established that the DNA of a pseudogene, the RNA transcribed from a pseudogene, or the protein translated from a pseudogene can have multiple, diverse functions and that these functions can affect not only their parental genes but also unrelated genes. Therefore, pseudogenes have emerged as a previously unappreciated class of sophisticated modulators of gene expression, with a multifaceted involvement in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (CRL-ITT), c/o IFC-CNR Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
46
|
Leite LAR. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. BIOTA NEOTROPICA 2012. [DOI: 10.1590/s1676-06032012000300029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular tools have been used in taxonomy for the purpose of identification and classification of living organisms. Among these, a short sequence of the mitochondrial DNA, popularly known as DNA barcoding, has become very popular. However, the usefulness and dependability of DNA barcodes have been recently questioned because mitochondrial pseudogenes, non-functional copies of the mitochondrial DNA incorporated into the nuclear genome, have been found in various taxa. When these paralogous sequences are amplified together with the mitochondrial DNA, they may go unnoticed and end up being analyzed as if they were orthologous sequences. In this contribution the different points of view regarding the implications of mitochondrial pseudogenes for entomology are reviewed and discussed. A discussion of the problem from a historical and conceptual perspective is presented as well as a discussion of strategies to keep these nuclear mtDNA copies out of sequence analyzes.
Collapse
|
47
|
Schuster LN, Sommer RJ. Expressional and functional variation of horizontally acquired cellulases in the nematode Pristionchus pacificus. Gene 2012; 506:274-82. [DOI: 10.1016/j.gene.2012.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
48
|
Nolasco S, Bellido J, Gonçalves J, Tavares A, Zabala JC, Soares H. The expression of tubulin cofactor A (TBCA) is regulated by a noncoding antisense Tbca RNA during testis maturation. PLoS One 2012; 7:e42536. [PMID: 22880023 PMCID: PMC3412815 DOI: 10.1371/journal.pone.0042536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal Findings We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosomes, Mammalian/genetics
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Genome/genetics
- Male
- Mice
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Spermatocytes/metabolism
- Spermatogenesis/genetics
- Testis/growth & development
- Testis/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sofia Nolasco
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - João Gonçalves
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandra Tavares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
49
|
Enfield KSS, Pikor LA, Martinez VD, Lam WL. Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications. GENETICS RESEARCH INTERNATIONAL 2012; 2012:737416. [PMID: 22852089 PMCID: PMC3407615 DOI: 10.1155/2012/737416] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/08/2012] [Indexed: 01/07/2023]
Abstract
Lung cancer biology has traditionally focused on genomic and epigenomic deregulation of protein-coding genes to identify oncogenes and tumor suppressors diagnostic and therapeutic targets. Another important layer of cancer biology has emerged in the form of noncoding RNAs (ncRNAs), which are major regulators of key cellular processes such as proliferation, RNA splicing, gene regulation, and apoptosis. In the past decade, microRNAs (miRNAs) have moved to the forefront of ncRNA cancer research, while the role of long noncoding RNAs (lncRNAs) is emerging. Here we review the mechanisms by which miRNAs and lncRNAs are deregulated in lung cancer, the technologies that can be applied to detect such alterations, and the clinical potential of these RNA species. An improved comprehension of lung cancer biology will come through the understanding of the interplay between deregulation of non-coding RNAs, the protein-coding genes they regulate, and how these interactions influence cellular networks and signalling pathways.
Collapse
Affiliation(s)
- Katey S. S. Enfield
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
| | - Larissa A. Pikor
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
| | - Victor D. Martinez
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T2B5
| | - Wan L. Lam
- British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z1L3
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T2B5
| |
Collapse
|
50
|
Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, Khor CC, Goh LK, Li YJ, Lim W, Ho CEH, Hawthorne F, Zheng Y, Chua D, Inoko H, Yamashiro K, Ohno-Matsui K, Matsuo K, Matsuda F, Vithana E, Seielstad M, Mizuki N, Beuerman RW, Tai ES, Yoshimura N, Aung T, Young TL, Wong TY, Teo YY, Saw SM. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet 2012; 8:e1002753. [PMID: 22685421 PMCID: PMC3369958 DOI: 10.1371/journal.pgen.1002753] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = -0.16 mm per minor allele, P(meta) =2.69 × 10(-10)). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) =0.75, 95% CI: 0.68-0.84, P(meta) =4.38 × 10(-7)) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.
Collapse
Affiliation(s)
- Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Xin Zhou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Isao Nakata
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Liang-Kee Goh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, North Carolina, United States of America
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wan'e Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Candice E. H. Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Felicia Hawthorne
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yingfeng Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Daniel Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eranga Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Mark Seielstad
- Institute for Human Genetics and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - E.-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Terri L. Young
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tien-Yin Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| |
Collapse
|