1
|
Liu J, Chang X, Manji L, Xu Z, Xiao W. Roles of small peptides encoded by non-coding RNAs in tumor invasion and migration. Front Pharmacol 2024; 15:1442196. [PMID: 39351098 PMCID: PMC11439703 DOI: 10.3389/fphar.2024.1442196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Non-coding RNAs (ncRNAs), which are usually considered not to encode proteins, are widely involved in important activities including signal transduction and cell proliferation. However, recent studies have shown that small peptides encoded by ncRNAs (SPENs) have important roles in the development of malignant tumors. Some SPENs participate in the regulation of skeleton reorganization, intercellular adhesion, signaling and other processes of tumor cells, with effects on the invasive and migratory abilities of the cells. Therefore, SPENs have potential applications as therapeutic targets and biomarkers of malignant tumors. Invasion and migration of malignant tumor cells are the main reasons for poor prognosis of cancer patients and represent the most challenging aspects of treatment of malignant tumors. Currently, the main treatments for tumors include surgery, radiotherapy, targeted drug therapy. Surgery, however, is reserved for early stages of cancer and carries risks and costs. Radiotherapy and targeted therapy have serious side effects. This review describes the mechanisms of SPENs and their roles in tumor invasion and migration, with the aim of providing new targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Xiyue Chang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Laeeqa Manji
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhijie Xu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wan’an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Zhan K, Pan H, Zhou Z, Tang W, Ye Z, Huang S, Luo L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed Pharmacother 2023; 169:115876. [PMID: 37976888 DOI: 10.1016/j.biopha.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of RNAs that are more than 200 nucleotides without protein-coding potential. In recent years, more and more attention has been paid to the role of lncRNAs in cancer pathogenesis. LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is located on chromosome 11p15.5 with a total length of 91 kb and is highly expressed in various malignancies, which is closely related to tumor growth, lymph node metastasis, survival cycle and recurrence rate. In addition, KCNQ1OT1 is involved in the regulation of PI3K/AKT and Wnt/β-catenin signaling pathways. In this review, the mechanism and related progress of KCNQ1OT1 in different cancers were reviewed. It was found that KCNQ1OT1 can stabilize mRNA expression through sponging miRNA, which not only induced tumor cell proliferation, migration, invasion, drug resistance, epithelial-mesenchymal transition (EMT) and inhibited cell apoptosis in vitro, but also promoted tumor growth and metastasis in vivo. Therefore, as a new biomarker and therapeutic target, KCNQ1OT1 has broad prospects for the diagnosis and treatment of different cancers.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhang Zhou
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan 430000, China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China.
| |
Collapse
|
3
|
Nghi HT, Shahmohammadi S, Ebrahimi KH. Ancient complexes of iron and sulfur modulate oncogenes and oncometabolism. Curr Opin Chem Biol 2023; 76:102338. [PMID: 37295349 DOI: 10.1016/j.cbpa.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Inorganic complexes of iron and sulfur, that is, iron-sulfur [FeS] clusters, have played a fundamental role in life on Earth since the prebiotic period. These clusters were involved in elementary reactions leading to the emergence of life and, since then, gained function in processes, such as respiration, replication, transcription, and the immune response. We discuss how three [FeS] proteins involved in the innate immune response play a role in oncogene expression/function and oncometabolism. Our analysis highlights the importance of future research into understanding the [FeS] clusters' roles in cancer progression and proliferation. The outcomes of these studies will help identify new targets and develop new anticancer therapeutics.
Collapse
Affiliation(s)
- Hoang Thao Nghi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center and Stereochemistry Research Group, Eötvös Loránd Research Network, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Kourosh H Ebrahimi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
4
|
Pierattini B, D’Agostino S, Bon C, Peruzzo O, Alendar A, Codino A, Ros G, Persichetti F, Sanges R, Carninci P, Santoro C, Espinoza S, Valentini P, Pandolfini L, Gustincich S. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:402-414. [PMID: 37187707 PMCID: PMC10176434 DOI: 10.1016/j.omtn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs.
Collapse
Affiliation(s)
- Bianca Pierattini
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Sabrina D’Agostino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Omar Peruzzo
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Andrej Alendar
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Azzurra Codino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Gloria Ros
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Persichetti
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
- Human Technopole, 20157 Milan, Italy
| | - Claudio Santoro
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Paola Valentini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Paola Valentini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Luca Pandolfini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Stefano Gustincich, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| |
Collapse
|
5
|
Li H, Gao J, Liu L, Zhang S. LINC00958: A promising long non-coding RNA related to cancer. Biomed Pharmacother 2022; 151:113087. [PMID: 35569349 DOI: 10.1016/j.biopha.2022.113087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a class of RNA transcripts longer than 200 nucleotides, do not encode proteins; however, they encode small peptides and micropeptides that act as bioactive peptides with notable effects in regulating the progression of malignant tumors, such as lung and colorectal cancers, and affecting patient prognosis. lncRNAs are important intracellular regulators, particularly in tumorigenesis and tumor progression. Long intergenic non-protein coding RNA958 (LINC00958), which has received increasing attention in recent years, is highly expressed in various malignancies, including head and neck squamous cell carcinoma (HNSC), non-small-cell lung cancer (NSCLC), gastric cancer, hepatocellular carcinoma (HCC), colorectal cancer, bladder cancer, and breast cancer. Here, we reviewed the recent studies on LINC00958 as well as its closely related clinical features and functional regulation in cancers. We systematically expounded the molecular mechanisms underlying the biological functions of LINC00958 in inhibiting cell apoptosis and enhancing the chemoradiotherapy resistance of tumor cells. The upregulation of LINC00958 enhances the resistance of tumor cells to radiotherapy and chemotherapy and induces lymphangiogenesis. Moreover, it is involved in tumor glycolytic metabolism, which plays a crucial role in facilitating the proliferation, invasion, and migration of tumor cells. Additionally, analysis of various studies revealed that LINC00958 acts as an endogenous competitive RNA (ceRNA) and regulates the malignant behavior of tumor cells through the miRNA-mRNA axis. Collectively, the use of LINC00958 as a novel biomarker and therapeutic target for the clinical diagnosis and treatment of different cancers has bright prospects in the future.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Alagia A, Gullerova M. The Methylation Game: Epigenetic and Epitranscriptomic Dynamics of 5-Methylcytosine. Front Cell Dev Biol 2022; 10:915685. [PMID: 35721489 PMCID: PMC9204050 DOI: 10.3389/fcell.2022.915685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA and RNA methylation dynamics have been linked to a variety of cellular processes such as development, differentiation, and the maintenance of genome integrity. The correct deposition and removal of methylated cytosine and its oxidized analogues is pivotal for cellular homeostasis, rapid responses to exogenous stimuli, and regulated gene expression. Uncoordinated expression of DNA/RNA methyltransferases and demethylase enzymes has been linked to genome instability and consequently to cancer progression. Furthermore, accumulating evidence indicates that post-transcriptional DNA/RNA modifications are important features in DNA/RNA function, regulating the timely recruitment of modification-specific reader proteins. Understanding the biological processes that lead to tumorigenesis or somatic reprogramming has attracted a lot of attention from the scientific community. This work has revealed extensive crosstalk between epigenetic and epitranscriptomic pathways, adding a new layer of complexity to our understanding of cellular programming and responses to environmental cues. One of the key modifications, m5C, has been identified as a contributor to regulation of the DNA damage response (DDR). However, the various mechanisms of dynamic m5C deposition and removal, and the role m5C plays within the cell, remains to be fully understood.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Liang W, Yi H, Mao C, Meng Q, Wu X, Li S, Xue J. Research Progress of RNA Methylation Modification in Colorectal Cancer. Front Pharmacol 2022; 13:903699. [PMID: 35614935 PMCID: PMC9125385 DOI: 10.3389/fphar.2022.903699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that RNA methylation, as the most common modification of mRNA, is of great significance in tumor progression and metastasis. Colorectal cancer is a common malignant tumor of the digestive system that seriously affects the health of middle-aged and elderly people. Although there have been many studies on the biological mechanism of the occurrence and development of colorectal cancer, there are still major deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of RNA methylation, it was found that RNA modification is highly related to colorectal cancer tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-methylguanine, pseudouridine and their modification enzymes followed by summarizing their functions in colorectal cancer.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongyang Yi
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Chenyu Mao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
8
|
Pronina IV, Uroshlev LA, Moskovtsev AA, Zaichenko DM, Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA, Brovkina OI. Dysregulation of lncRNA–miRNA–mRNA Interactome as a Marker of Metastatic Process in Ovarian Cancer. Biomedicines 2022; 10:biomedicines10040824. [PMID: 35453574 PMCID: PMC9031843 DOI: 10.3390/biomedicines10040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA–miRNA–mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial–mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1–miR-203a–c-MET and OIP5-AS1–miR-203a–ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.
Collapse
Affiliation(s)
- Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Leonid A. Uroshlev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Tatiana P. Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Correspondence:
| | - Olga I. Brovkina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Federal Research and Clinical Center of Federal Medical-Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
9
|
Leger A, Amaral PP, Pandolfini L, Capitanchik C, Capraro F, Miano V, Migliori V, Toolan-Kerr P, Sideri T, Enright AJ, Tzelepis K, van Werven FJ, Luscombe NM, Barbieri I, Ule J, Fitzgerald T, Birney E, Leonardi T, Kouzarides T. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat Commun 2021; 12:7198. [PMID: 34893601 PMCID: PMC8664944 DOI: 10.1038/s41467-021-27393-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect their structure and interaction properties. In recent years, a growing number of PTMs have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical framework that identifies modifications from these data. Our strategy compares an RNA sample of interest against a non-modified control sample, not requiring a training set and allowing the use of replicates. We show that Nanocompore can detect different RNA modifications with position accuracy in vitro, and we apply it to profile m6A in vivo in yeast and human RNAs, as well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and provide novel insights on the co-occurrence of multiple modified residues on individual RNA molecules.
Collapse
Affiliation(s)
- Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Oxford Nanopore Technologies, Gosling Building, Oxford Science Park, Oxford, UK
| | - Paulo P Amaral
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
- The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, UK
- INSPER - Institute of Education and Research, São Paulo, SP, Brazil
| | - Luca Pandolfini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
- Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy
| | | | - Federica Capraro
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Valentina Miano
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, UK
| | - Valentina Migliori
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | | - Anton J Enright
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Department of Genetics, Environment and Evolution, UCL Genetics Institute, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Isaia Barbieri
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, UK
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Tommaso Leonardi
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK.
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK.
- The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, UK.
| |
Collapse
|
10
|
Ma J, Han H, Huang Y, Yang C, Zheng S, Cai T, Bi J, Huang X, Liu R, Huang L, Luo Y, Li W, Lin S. METTL1/WDR4 mediated m 7G tRNA modifications and m 7G codon usage promote mRNA translation and lung cancer progression. Mol Ther 2021; 29:3422-3435. [PMID: 34371184 DOI: 10.1016/j.ymthe.2021.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Mis-regulated epigenetic modifications in RNAs are associated with human cancers. The transfer RNAs (tRNAs) are the most heavily modified RNA species in cells, however, little is known about the functions of tRNA modifications in cancers. In this study, we uncovered that the expression levels of tRNA N7-methylguanosine (m7G) methyltransferase complex components METTL1 and WDR4 are significantly elevated in human lung cancer samples and negatively associated with patient prognosis. Impaired m7G tRNA modification upon METTL1/WDR4 depletion resulted in decreased cell proliferation, colony formation, cell invasion and impaired tumorigenic capacities of lung cancer cells in vitro and in vivo. Moreover, gain-of-function and mutagenesis experiments revealed that METTL1 promoted lung cancer growth and invasion through regulation of m7G tRNA modifications. Profiling of tRNA methylation and mRNA translation revealed that highly translated mRNAs have higher frequencies of m7G tRNA decoded codons and knockdown of METTL1 resulted in decreased translation of mRNAs with higher frequencies of m7G tRNA codons, suggesting that tRNA modifications and codon usage play essential function in mRNA translation regulation. Our data uncovered novel insights on mRNA translation regulation through tRNA modifications and the corresponding mRNA codon compositions in lung cancer, providing new molecular basis underlying lung cancer progression.
Collapse
Affiliation(s)
- Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080; Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Hui Han
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Ying Huang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Chunlong Yang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Siyi Zheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Tiancai Cai
- Xiamen special service convalescent center, Xiamen, China 361005
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Ruiming Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Libin Huang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China 510080.
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080.
| | - Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 510080; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China 510060.
| |
Collapse
|
11
|
Xhemalçe B. Biological functions of RNA modifications. Brief Funct Genomics 2021; 20:75-76. [PMID: 33748834 DOI: 10.1093/bfgp/elab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|