1
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
2
|
Buckley KM, Dooley H. Immunological Diversity Is a Cornerstone of Organismal Defense and Allorecognition across Metazoa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:203-211. [PMID: 35017209 DOI: 10.4049/jimmunol.2100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023]
Abstract
The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.
Collapse
Affiliation(s)
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, MD
| |
Collapse
|
3
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
4
|
Whole-Genome Resequencing of Twenty Branchiostoma belcheri Individuals Provides a Brand-New Variant Dataset for Branchiostoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3697342. [PMID: 32090082 PMCID: PMC7008246 DOI: 10.1155/2020/3697342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/26/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
As the extant representatives of the basal chordate lineage, amphioxi (including the genera Branchiostoma, Asymmetron and Epigonichthys) play important roles in tracing the state of chordate ancestry. Previous studies have reported that members of the Branchiostoma species have similar morphological phenotypic characteristics, but in contrast, there are high levels of genetic polymorphisms in the populations. Here, we resequenced 20 Branchiostomabelcheri genomes to an average depth of approximately 12.5X using the Illumina HiSeq 2000 platform. In this study, over 52 million variations (~12% of the total genome) were detected in the B. belcheri population, and an average of 12.8 million variations (~3% of the total genome) were detected in each individual, confirming that Branchiostoma is one of the most genetically diverse species sequenced to date. Demographic inference analysis highlighted the role of historical global temperature in the long-term population dynamics of Branchiostoma, and revealed a population expansion at the Greenlandian stage of the current geological epoch. We detected 594 Single nucleotide polymorphism and 148 Indels in the Branchiostoma mitochondrial genome, and further analyzed their genetic mutations. A recent study found that the epithelial cells of the digestive tract in Branchiostoma can directly phagocytize food particles and convert them into absorbable nontoxic nutrients using powerful digestive and immune gene groups. In this study, we predicted all potential mutations in intracellular digestion-associated genes. The results showed that most “probably damaging” mutations were related to rare variants (MAF<0.05) involved in strengthening or weakening the intracellular digestive capacity of Branchiostoma. Due to the extremely high number of polymorphisms in the Branchiostoma genome, our analysis with a depth of approximately 12.5X can only be considered a preliminary analysis. However, the novel variant dataset provided here is a valuable resource for further investigation of phagocytic intracellular digestion in Branchiostoma and determination of the phenotypic and genotypic features of Branchiostoma.
Collapse
|
5
|
He C, Han T, Liao X, Zhou Y, Wang X, Guan R, Tian T, Li Y, Bi C, Lu N, He Z, Hu B, Zhou Q, Hu Y, Lu Z, Chen JY. Phagocytic intracellular digestion in amphioxus ( Branchiostoma). Proc Biol Sci 2019; 285:rspb.2018.0438. [PMID: 29875301 PMCID: PMC6015868 DOI: 10.1098/rspb.2018.0438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/11/2018] [Indexed: 01/10/2023] Open
Abstract
The digestive methods employed by amphioxus (Branchiostoma)—both intracellular phagocytic digestion and extracellular digestion—have been discussed since 1937. Recent studies also show that epithelial cells lining the Branchiostoma digestive tract can express many immune genes. Here, in Branchiostoma belcheri, using a special tissue fixation method, we show that some epithelial cells, especially those lining the large diverticulum protruding from the gut tube, phagocytize food particles directly, and Branchiostoma can rely on this kind of phagocytic intracellular digestion to obtain energy throughout all stages of its life. Gene expression profiles suggest that diverticulum epithelial cells have functional features of both digestive cells and phagocytes. In starved Branchiostoma, these cells accumulate endogenous digestive and hydrolytic enzymes, whereas, when sated, they express many kinds of immune genes in response to stimulation by phagocytized food particles. We also found that the distal hindgut epithelium can phagocytize food particles, but not as many. These results illustrate phagocytic intercellular digestion in Branchiostoma, explain why Branchiostoma digestive tract epithelial cells express typical immune genes and suggest that the main physiological function of the Branchiostoma diverticulum is different from that of the vertebrate liver.
Collapse
Affiliation(s)
- Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xin Liao
- Nanjing Institute of Paleontology and Geology, Nanjing, People's Republic of China.,Guangxi Mangrove Research Center, Beihai, Guangxi, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xiuqiang Wang
- Beihai Marine Science and Economy Park, Beihai, Guangxi, People's Republic of China
| | - Rui Guan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yixin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Ziyi He
- Electron Microscopy Research Center, School of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Hu
- Electron Microscopy Research Center, School of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiang Zhou
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yue Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | | | | |
Collapse
|
6
|
Moutkine I, Collins EL, Béchade C, Maroteaux L. Evolutionary considerations on 5-HT2 receptors. Pharmacol Res 2019; 140:14-20. [DOI: 10.1016/j.phrs.2018.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
|
7
|
Priyathilaka TT, Bathige SDNK, Lee S, Nam BH, Lee J. Transcriptome-wide identification, functional characterization, and expression analysis of two novel invertebrate-type Toll-like receptors from disk abalone (Haliotis discus discus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:802-815. [PMID: 30368026 DOI: 10.1016/j.fsi.2018.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Toll-like receptors (TLRs) are well-known pattern recognition receptors that play key immunological roles in a diverse range of organisms. In this study, two novel invertebrate TLRs from disk abalone (designated as AbTLR-A and AbTLR-B) were identified and functionally characterized for the first time. AbTLR-A and AbTLR-B comprised the typical TLR domain architecture containing an extracellular leucine-rich repeat domain, transmembrane domain, and Toll/interleukin-1 receptor domain. Expressional analysis revealed that both TLRs were constitutively expressed at all the early embryonic stages of disk abalone analyzed, with the highest level of AbTLR-A found at the 16-cell stage and AbTLR-B at the trochophore stage. According to tissue distribution analysis, prominent mRNA expression of AbTLR-A and AbTLR-B was detected in the hemocytes and gills, respectively. AbTLR-A and AbTLR-B mRNAs were significantly up-regulated in response to Gram-negative Vibrio parahemolyticus, Gram-positive Listeria monocytogenes, and viral hemorrhagic septicemia virus injections in abalone hemocytes and gills. Overexpression of AbTLR-A and AbTLR-B in HEK293T cells directly activated nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) responsive reporters. Neither TLRs showed a high response to pathogen-associated molecular patterns in vitro. Co-expression of AbTLR-A and AbTLR-B with AbMyD88-2 and AbMyD88-X activated NF-κB-responsive reporters in a synergetic manner. These findings demonstrate the involvement of AbTLR-A and AbTLR-B in abalone innate immunity.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
8
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
9
|
Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int J Mol Sci 2018; 19:ijms19030721. [PMID: 29510476 PMCID: PMC5877582 DOI: 10.3390/ijms19030721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs–PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.
Collapse
|
10
|
Lv Z, Qiu L, Wang M, Jia Z, Wang W, Xin L, Liu Z, Wang L, Song L. Comparative study of three C1q domain containing proteins from pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:42-51. [PMID: 28923592 DOI: 10.1016/j.dci.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
C1q domain containing proteins (C1qDCs) are a family of proteins containing a globular head C1q domain (ghC1q) in C-terminus, which serve as pattern recognition receptors (PRRs) and mediate a series of immune responses. In the present study, three C1qDC proteins from pacific oyster Crassostrea gigas (CgC1qDC-2, CgC1qDC-3, CgC1qDC-4) were characterized and comparatively investigated to understand their roles in the immune response. All the three recombinant CgC1qDC proteins (rCgC1qDCs) could bind lipopolysaccharide (LPS) significantly but they could not bind lipoteichoic acid (LTA), β-1,3-glucan (GLU), mannan (MAN), and polyinosinic-polycytidylic acid (Poly I:C). Correspondingly, they all exhibited higher binding activities towards Gram-negative bacteria Vibrio anguillarum and V. splendidus. Moreover, they could enhance the phagocytosis of oyster hemocytes, and the enhancements towards Gram-negative bacteria were significantly higher than that towards Gram-positive bacteria (p < 0.01). The LPS binding affinity of rCgC1qDC-3 (KD = 8.74 × 10-7 M) was higher than that of rCgC1qDC-2 (KD = 7.76 × 10-5 M) and rCgC1qDC-4 (KD = 1.09 × 10-5 M). Meanwhile, rCgC1qDC-3 exhibited significantly higher enhancement on phagocytosis of oyster hemocytes towards Gram-negative bacteria than that of rCgC1qDC-2 and rCgC1qDC-4 (p < 0.05). After the secondary challenge with V. splendidus, the up-regulations of CgC1qDC-2 and CgC1qDC-4 mRNA in hemocytes occurred at 6 h, while that of CgC1qDC-3 was observed at 3 h and lasted for 24 h. And CgC1qDC-3 responded with high mRNA level for tested 24 h upon the secondary challenge with V. anguillarum as well. These results collectively suggested that three CgC1qDCs could serve as PRRs to specifically recognize certain Gram-negative bacteria and opsonins to enhance phagocytosis. CgC1qDC-3, with higher binding affinity to LPS, stronger opsonization and more rapid and persistent mRNA expression response upon the secondary challenge with homologous Vibrios, might exert efficient functions in the immune responses against invading pathogens.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Ren Y, Ding D, Pan B, Bu W. The TLR13-MyD88-NF-κB signalling pathway of Cyclina sinensis plays vital roles in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2017; 70:720-730. [PMID: 28958897 DOI: 10.1016/j.fsi.2017.09.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/24/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors, the best known pattern recognition receptors, play important roles in recognizing non-self molecules and binding pathogen-associated molecular patterns in the innate immune system. In the present research, the cDNA and protein characterization of the TLR signalling pathway genes including IRAK4, TRAK6 and IKKα (named CsIRAK4, CsTRAF6 and CsIKKα, respectively) with the typical motifs from Cyclina sinensis showed significant similarity with their homologues from other shellfish. Furthermore, the mRNA transcripts of these three genes are ubiquitously expressed in all tissues tested and are dominantly expressed in C. sinensis haemocytes (P < 0.05). Moreover, IRAK4, TRAK6 and IKKα cDNA expression levels were all up-regulated after injection with Vibrio anguillarum, Micrococcus luteus and poly I:C (P < 0.01) as shown by quantitative real-time PCR, indicating that they were involved in responding to pathogenic stimulation. We explored the function of the TLR13-MyD88-NF-κB signalling pathway in the innate immune responses of C. sinensis by RNA interference and immune challenges. The results suggested the mRNA expression patterns of CsMyD88, CsIRAK4, CsTRAF6, CsIKKα, CsIκB, CsNF-κB, CsC-LYZ and CsAMP were all down-regulated (P < 0.01) in normal and stimulated C. sinensis haemocytes, revealing the involvement of the TLR13-MyD88-NF-κB signalling pathway in innate immunity by positively adjusting internal signalling factors and immune-related genes. In summary, a TLR13-MyD88-NF-κB signalling pathway exists and plays vital roles in innate immune responses in C. sinensis. These findings collectively lay the foundation for studying the functional characterization of internal signalling factors and establishing a regulatory network for the TLR signalling pathway in molluscs.
Collapse
Affiliation(s)
- Yipeng Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Dan Ding
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
12
|
Gerdol M, Venier P, Edomi P, Pallavicini A. Diversity and evolution of TIR-domain-containing proteins in bivalves and Metazoa: New insights from comparative genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:145-164. [PMID: 28109746 DOI: 10.1016/j.dci.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain has a fundamental role in the innate defence response of plants, vertebrate and invertebrate animals. Mostly found in the cytosolic side of membrane-bound receptor proteins, it mediates the intracellular signalling upon pathogen recognition via heterotypic interactions. Although a number of TIR-domain-containing (TIR-DC) proteins have been characterized in vertebrates, their evolutionary relationships and functional role in protostomes are still largely unknown. Due to the high abundance and diversity of TIR-DC proteins in bivalve molluscs, we investigated this class of marine invertebrates as a case study. The analysis of the available genomic and transcriptomic data allowed the identification of over 400 full-length sequences and their classification in protein families based on sequence homology and domain organization. In addition to TLRs and MyD88 adaptors, bivalves possess a surprisingly large repertoire of intracellular TIR-DC proteins, which are conserved across a broad range of metazoan taxa. Overall, we report the expansion and diversification of TIR-DC proteins in several invertebrate lineages and the identification of many novel protein families possibly involved in both immune-related signalling and embryonic development.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Paola Venier
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Paolo Edomi
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Alberto Pallavicini
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
13
|
Wang W, Zhang T, Wang L, Xu J, Li M, Zhang A, Qiu L, Song L. A new non-phagocytic TLR6 with broad recognition ligands from Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:182-190. [PMID: 27443817 DOI: 10.1016/j.dci.2016.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Toll like receptors (TLRs) are evolutionarily prevalent recognition molecules in the Animalia and Plantae kingdom, which play vital roles in immune defense and homeostasis maintenance. Recently, the expansion of TLRs has been reported in invertebrate genomes, but the characters and immune functions of these expanded TLRs were still not well known. In the present study, a new member of TLR family with five LRR domains was identified in Crassostrea gigas (designated CgTLR6). It shared homology with TLRs from other organisms with the closest phylogenic relationship with molluscan TLRs. The recombinant protein of CgTLR6 (rCgTLR6) displayed direct bind activity to gram-negative bacteria Vibrio anguillarum and Vibrio splendidus, gram-positive bacteria Staphylococci aureus and Micrococcus luteus, and fungi Pichia pastoris, but not to fungi Yarrowia lipolytica. It also exhibited affinity to lipopolysaccharide (LPS) and peptidoglycan (PGN), while no affinity to mannan (MAN). The mRNA of CgTLR6 was mainly detected in hemocytes and hepatopancreas, and was significantly induced (p < 0.01) in hemocytes after the oyster was stimulated with LPS, PGN or bacteria V. splendidus. Immunofluorescence analysis indicated that CgTLR6 was mainly located at the membrane of hemocytes. The blockage of CgTLR6 by anti-rCgTLR6 antibody did not significantly inhibit the phagocytic rates of hemocytes toward recognized gram-negative bacteria V. anguillarum and V. splendidus, and unrecognized fungi Y. lipolytica. These results collectively implied that CgTLR6 was a novel non-phagocytic receptor of C. gigas to mediate humoral immune response by recognizing pathogen-associated molecular patterns on the invaders.
Collapse
Affiliation(s)
- Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anguo Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
14
|
Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria. Nat Commun 2016; 7:10617. [PMID: 26875669 PMCID: PMC4757023 DOI: 10.1038/ncomms10617] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Protochordate variable region-containing chitin-binding proteins (VCBPs) consist of immunoglobulin-type V domains and a chitin-binding domain (CBD). VCBP V domains facilitate phagocytosis of bacteria by granulocytic amoebocytes; the function of the CBD is not understood. Here we show that the gut mucosa of Ciona intestinalis contains an extensive matrix of chitin fibrils to which VCBPs bind early in gut development, before feeding. Later in development, VCBPs and bacteria colocalize to chitin-rich mucus along the intestinal wall. VCBP-C influences biofilm formation in vitro and, collectively, the findings of this study suggest that VCBP-C may influence the overall settlement and colonization of bacteria in the Ciona gut. Basic relationships between soluble immunoglobulin-type molecules, endogenous chitin and bacteria arose early in chordate evolution and are integral to the overall function of the gut barrier.
Collapse
|
15
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
16
|
Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
17
|
Dishaw LJ, Cannon JP, Litman GW, Parker W. Immune-directed support of rich microbial communities in the gut has ancient roots. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:36-51. [PMID: 24984114 PMCID: PMC4146740 DOI: 10.1016/j.dci.2014.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 05/12/2023]
Abstract
The animal gut serves as a primary location for the complex host-microbe interplay that is essential for homeostasis and may also reflect the types of ancient selective pressures that spawned the emergence of immunity in metazoans. In this review, we present a phylogenetic survey of gut host-microbe interactions and suggest that host defense systems arose not only to protect tissue directly from pathogenic attack but also to actively support growth of specific communities of mutualists. This functional dichotomy resulted in the evolution of immune systems much more tuned for harmonious existence with microbes than previously thought, existing as dynamic but primarily cooperative entities in the present day. We further present the protochordate Ciona intestinalis as a promising model for studying gut host-bacterial dialogue. The taxonomic position, gut physiology and experimental tractability of Ciona offer unique advantages in dissecting host-microbe interplay and can complement studies in other model systems.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA.
| | - John P Cannon
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA; Department of Molecular Genetics, All Children's Hospital-Johns Hopkins Medicine, 501 6th Avenue South, St. Petersburg, FL 33701, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Box 2605, Durham, NC 27710, USA
| |
Collapse
|
18
|
An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 2014; 44:3680-95. [DOI: 10.1002/eji.201444734] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/27/2014] [Accepted: 08/28/2014] [Indexed: 11/07/2022]
|
19
|
Yue JX, Yu JK, Putnam NH, Holland LZ. The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol Evol 2014; 6:2681-96. [PMID: 25240057 PMCID: PMC4224339 DOI: 10.1093/gbe/evu212] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian.
Collapse
Affiliation(s)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego
| |
Collapse
|
20
|
Abstract
Summary
Recently it has become evident that invertebrates may mount a highly variable immune response that is dependent on which pathogen is involved. The molecular mechanisms behind this diversity are beginning to be unravelled and in several invertebrate taxa immune proteins exhibiting a broad range of diversity have been found. In some cases, evidence has been gathered suggesting that this molecular diversity translates into the ability of an affected invertebrate to mount a defence that is specifically aimed at a particular pathogen.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
21
|
Li D, Li G, Wang K, Liu X, Li W, Chen X, Wang Y. Isolation and functional analysis of the promoter of the amphioxus Hsp70a gene. Gene 2012; 510:39-46. [DOI: 10.1016/j.gene.2012.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/21/2022]
|
22
|
Linking innate and adaptive immunity. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Wan Q, Wicramaarachchi WDN, Whang I, Lim BS, Oh MJ, Jung SJ, Kim HC, Yeo SY, Lee J. Molecular cloning and functional characterization of two duplicated two-cysteine containing type I interferon genes in rock bream Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:886-898. [PMID: 22889848 DOI: 10.1016/j.fsi.2012.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/18/2012] [Accepted: 07/29/2012] [Indexed: 06/01/2023]
Abstract
Two type I interferon (IFN) genes, designated as rbIFN1 and rbIFN2, have been cloned and characterized in rock bream. They are both comprised of 5 exons and 4 introns, and are closely linked on the rock bream chromosome in a unique head-to-head configuration. Both genes encode 183 amino acid (aa) precursor with a putative 17 aa signal peptide in the N-terminal. Only one amino acid divergence is present between two IFNs. Compared with the type I IFNs in higher vertebrates, two rock bream IFNs possess conserved alpha helical structure and share approximately 20% identity in aa sequence. The highest aa sequence homology (83.2%) was found with European seabass IFNs. Phylogenetic analysis grouped two rock bream IFNs into the subgroup-d of two-cysteine containing IFNs. The gene synteny analysis revealed that they are orthologous with the zebrafish IFNφ4 on chromosome-12 and paralogous to each other, which are likely derived from a gene duplication event followed by an inversion. A number of cis-regulatory elements associated with immune response including 15 IRF and 6 NF-κB binding sites are predicted in the shared 4.5 kb 5'-flanking region. Highest constitutive expression of two IFNs was detected in blood cells and skin. Their expression in blood cells and head kidney was up-regulated by lipopolysaccharide, poly I:C, Edwardsiella tarda, Streptococcus iniae and iridovirus. Furthermore, recombinant rbIFN1 protein produced by E. coli induced a rapid and transient expression of the interferon inducible Mx gene in head kidney cells. These results suggest that two duplicated type I IFN genes are involved in rock bream host response to both viral and bacterial pathogens.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jin P, Zhou L, Song X, Qian J, Chen L, Ma F. Particularity and universality of a putative Gram-negative bacteria-binding protein (GNBP) gene from amphioxus (Branchiostoma belcheri): insights into the function and evolution of GNBP. FISH & SHELLFISH IMMUNOLOGY 2012; 33:835-845. [PMID: 22986589 DOI: 10.1016/j.fsi.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/05/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are important pattern recognition proteins (PRPs), which can initiate host defense in response to pathogen surface molecules. The roles of GNBP in innate immunity of arthropods and molluscs have recently been reported. However, the GNBP gene has not been characterized in the species of higher evolutionary status yet. In this study, we identified and characterized an amphioxus GNBP gene (designated as AmphiGNBP). First, we identified and cloned the AmphiGNBP and found that the AmphiGNBP encodes a putative protein with 558 amino acids, which contains a conserved β-1, 3-glucan recognizing and binding domain. Second, we found that the AmphiGNBP encodes two extra WSC (cell Wall integrity and Stress response Component) domains, which are unique in AmphiGNBP protein. The two WSC domains of AmphiGNBP protein coupled with the expansion of amphioxus immunity repertoire might undergo intensive domain shuffling during the age of the Cambrian explosion. Finally, we found that the AmphiGNBP was mainly expressed in immune tissues, such as hepatic cecum and intestine, and the expression of AmphiGNBP was affected after LPS stimulation. In conclusion, our findings disclose the particularity and universality of AmphiGNBP and provide profound insights into the function and evolution of GNBP.
Collapse
Affiliation(s)
- Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|