1
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024; 51:1361-1374. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As the nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
2
|
Wojnarowski K, Cholewińska P, Steinbauer P, Lautwein T, Hussein W, Streb LM, Palić D. Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit. Pathogens 2024; 13:908. [PMID: 39452779 PMCID: PMC11510180 DOI: 10.3390/pathogens13100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Outbreaks of furunculosis cause significant losses in salmonid aquaculture worldwide. With a recent rise in antimicrobial resistance, regulatory measures to minimize the use of antibiotics in animal husbandry, including aquaculture, have increased scrutiny and availability of veterinary medical products to control this disease in production facilities. In such a regulatory environment, the utility of autogenous vaccines to assist with disease prevention and control as a veterinary-guided prophylactic measure is of high interest to the producers and veterinary services alike. However, evolving concepts of epidemiological units and epidemiological links need to be considered during approval and acceptance procedures for the application of autogenous vaccines in multiple aquaculture facilities. Here, we present the results of solid-state nanopore sequencing (Oxford Nanopore Technologies, ONT) performed on 54 isolates of Aeromonas salmonicida ssp. salmonicida sampled during clinical outbreaks of furunculosis in different aquaculture facilities from Bavaria, Germany, from 2017 to 2020. All of the performed analyses (phylogeny, single nucleotide polymorphism and 3D protein modeling for major immunogenic proteins) support a high probability that all studied isolates belong to the same epidemiological unit. Simultaneously, we describe a cost/effective method of whole genome analysis with the usage of ONT as a viable strategy to study outbreaks of other pathogens in the field of aquatic veterinary medicine for the purpose of developing the best autogenous vaccine candidates applicable to multiple aquaculture establishments.
Collapse
Affiliation(s)
- Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | - Paulina Cholewińska
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | | | - Tobias Lautwein
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Wanvisa Hussein
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| | - Lisa-Marie Streb
- Helmholtz Munich, Research Unit Comparative Microbiome Analysis, 85764 Neuherberg, Germany;
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany; (K.W.); (P.C.); (W.H.)
| |
Collapse
|
3
|
Hall MB, Wick RR, Judd LM, Nguyen AN, Steinig EJ, Xie O, Davies M, Seemann T, Stinear TP, Coin L. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. eLife 2024; 13:RP98300. [PMID: 39388235 PMCID: PMC11466455 DOI: 10.7554/elife.98300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT's super-high accuracy model. ONT's superior performance is attributed to its ability to overcome Illumina's errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT's super-high accuracy data mitigates ONT's traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Michael B Hall
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ryan R Wick
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Louise M Judd
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - An N Nguyen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Eike J Steinig
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ouli Xie
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Monash Infectious Diseases, Monash HealthMelbourneAustralia
| | - Mark Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
4
|
Campos-Madueno EI, Aldeia C, Endimiani A. Nanopore R10.4 metagenomic detection of bla CTX-M/bla DHA antimicrobial resistance genes and their genetic environments in stool. Nat Commun 2024; 15:7450. [PMID: 39198442 PMCID: PMC11358271 DOI: 10.1038/s41467-024-51929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
The increasing prevalence of gut colonization with CTX-M extended-spectrum β-lactamase- and/or DHA plasmid-mediated AmpC-producing Escherichia coli is a concern. Here, we evaluate Nanopore-shotgun metagenomic sequencing (Nanopore-SMS) latest V14 chemistry to detect blaCTX-M and blaDHA genes from healthy stools. We test 25 paired samples characterized with culture-based methods (native and pre-enriched). Antimicrobial resistant genes (ARGs) are detected from reads and meta-assembled genomes (MAGs) to determine their associated genetic environments (AGEs). Sensitivity and specificity of native Nanopore-SMS are 61.1% and 100%, compared to 81.5% and 75% for pre-enriched Nanopore-SMS, respectively. Native Nanopore-SMS identifies only one sample with an AGE, whereas pre-enriched Nanopore-SMS recognizes 9/18 plasmids and 5/9 E. coli chromosomes. Pre-enriched Nanopore-SMS identifies more ARGs than native Nanopore-SMS (p < 0.001). Notably, blaCTX-Ms and blaDHAs AGEs (plasmid and chromosomes) are identified within 1 hour of sequencing. Furthermore, microbiota analyses show that pre-enriched Nanopore-SMS results in more E. coli classified reads (47% vs. 3.1%), higher differential abundance (5.69 log2 fold) and lower Shannon diversity index (p < 0.0001). Nanopore-SMS has the potential to be used for intestinal colonization screening. However, sample pre-enrichment is necessary to increase sensitivity. Further computational improvements are needed to reduce the turnaround time for clinical applications.
Collapse
Affiliation(s)
- Edgar I Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Deng QM, Zhang J, Zhang YY, Jia M, Ding DS, Fang YQ, Wang HZ, Gu HC. Diagnosis and treatment of refractory infectious diseases using nanopore sequencing technology: Three case reports. World J Clin Cases 2024; 12:5208-5216. [DOI: 10.12998/wjcc.v12.i22.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Infectious diseases are still one of the greatest threats to human health, and the etiology of 20% of cases of clinical fever is unknown; therefore, rapid identification of pathogens is highly important. Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming; serologic detection has window periods, false-positive and false-negative problems; and nucleic acid molecular detection methods can detect several known pathogens only once. Three-generation nanopore sequencing technology provides new options for identifying pathogens.
CASE SUMMARY Case 1: The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days, accompanied by cough and sputum. Nanopore sequencing of the drainage fluid revealed the presence of oral-like bacteria, leading to a clinical diagnosis of bronchopleural fistula. Cefoperazone sodium sulbactam treatment was effective. Case 2: The patient was admitted to the hospital with fever and headache, and CT revealed lung inflammation. Antibiotic treatment for Streptococcus pneumoniae, identified through nanopore sequencing of cerebrospinal fluid, was effective. Case 3: The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months. Despite antibacterial treatment, her symptoms worsened. The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii. The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.
CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
Collapse
Affiliation(s)
- Qing-Mei Deng
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230031, Anhui Province, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Jian Zhang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Yi-Yong Zhang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Min Jia
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Du-Shan Ding
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Yu-Qin Fang
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| | - Hong-Zhi Wang
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230031, Anhui Province, China
| | - Hong-Cang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui Province, China
- Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| |
Collapse
|
6
|
Pan G, Fu M, Ni H, Zhang W, Yao Y, Xie Y, Li J, Zhang Y, Wang Y, Han K, Gao Y. Legionella maceachernii pneumonia: a case report and literature review. Postgrad Med 2024; 136:678-682. [PMID: 39082113 DOI: 10.1080/00325481.2024.2385888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Legionella maceachernii pneumonia is a severe respiratory infection with low incidence but high mortality. However, the optimal treatment for this disease remains unclear. We report a case of successful treatment of Legionella maceachernii pneumonia, which is the first report of such a case in China. CASE PRESENTATION An 87-year-old man with concomitant chronic obstructive pulmonary disease, liver cirrhosis, and history of left nephrectomy was diagnosed with Legionella maceachernii pneumonia using Dano-seq pathogen metagenomic testing. After two weeks of treatment with cefoperazone/sulbactam combined with quinolone antibiotics, the patient showed improvement and was discharged. The patient continued to take oral quinolone antibiotics for one week after discharge and recovered during outpatient follow-up. CONCLUSIONS Dano-seq pathogen metagenomic testing can rapidly diagnose Legionella maceachernii pneumonia, and taking quinolone antibiotics is an effective treatment.
Collapse
Affiliation(s)
- Gaofeng Pan
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yi Yao
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yingcong Xie
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jing Li
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yijia Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yuting Wang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Kexing Han
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Yao G, Ke W, Xia B, Gao Z. Nanopore-based glycan sequencing: state of the art and future prospects. Chem Sci 2024; 15:6229-6243. [PMID: 38699252 PMCID: PMC11062086 DOI: 10.1039/d4sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Sequencing of biomacromolecules is a crucial cornerstone in life sciences. Glycans, one of the fundamental biomolecules, derive their physiological and pathological functions from their structures. Glycan sequencing faces challenges due to its structural complexity and current detection technology limitations. As a highly sensitive sensor, nanopores can directly convert nucleic acid sequence information into electrical signals, spearheading the revolution of third-generation nucleic acid sequencing technologies. However, their potential for deciphering complex glycans remains untapped. Initial attempts demonstrated the significant sensitivity of nanopores in glycan sensing, which provided the theoretical basis and insights for the realization of nanopore-based glycan sequencing. Here, we present three potential technical routes to employ nanopore technology in glycan sequencing for the first time. The three novel technical routes include: strand sequencing, capturing glycan chains as they translocate through nanopores; sequential hydrolysis sequencing, capturing released monosaccharides one by one; splicing sequencing, mapping signals from hydrolyzed glycan fragments to an oligosaccharide database/library. Designing suitable nanopores, enzymes, and motors, and extracting characteristic signals pose major challenges, potentially aided by artificial intelligence. It would be highly desirable to design an all-in-one high-throughput glycan sequencer instrument by integrating a sample processing unit, nanopore array, and signal acquisition system into a microfluidic device. The nanopore sequencer invention calls for intensive multidisciplinary cooperation including electrochemistry, glycochemistry, engineering, materials, enzymology, etc. Advancing glycan sequencing will promote the development of basic research and facilitate the discovery of glycan-based drugs and disease markers, fostering progress in glycoscience and even life sciences.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- School of Life Science and Technology, Shanghai Tech University 201210 Shanghai China
- Lingang Laboratory 200031 Shanghai China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 528400 Zhongshan China
| |
Collapse
|
8
|
Zhou L, Zou X, Hu Q, Hua H, Qi Q. Determination of the diagnostic accuracy of nanopore sequencing using bronchoalveolar lavage fluid samples from patients with sputum-scarce pulmonary tuberculosis. J Infect Chemother 2024; 30:98-103. [PMID: 37714266 DOI: 10.1016/j.jiac.2023.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE The early and efficient diagnosis of patients suspected of having pulmonary tuberculosis (PTB) remains challenging. This study aimed to evaluate the accuracy of nanopore sequencing for PTB diagnosis using bronchoalveolar lavage fluid (BALF) samples and compared it with other techniques such as acid-fast bacilli smear, culture, Xpert MTB/RIF, and CapitalBio Mycobacterium reverse transcription-polymerase chain reaction (MTB RT-PCR). METHODS We retrospectively analyzed the clinical data of 195 patients with suspected PTB who were admitted to our hospital. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC) of these assays were calculated and compared. RESULTS The overall sensitivity, specificity, PPV, NPV, and AUC of nanopore sequencing were 90.70%, 84.85%, 92.13%, 82.35%, and 0.88; those of acid-fast bacilli smear were 12.40%, 98.48%, 94.12%, 36.52%, and 0.55; those of culture were 36.43%, 100%, 100%, 44.59%, and 0.68; those of Xpert MTB/RIF were 41.09%, 100%, 100%, 46.48%, and 0.71; and those of CapitalBio MTB RT-PCR were 34.88%, 98.48%, 97.83%, 43.62%, and 0.67, respectively. CONCLUSION The nanopore sequencing assay using BALF samples showed the best diagnostic accuracy for sputum-scarce PTB. Moreover, it can improve the clinical diagnosis of PTB.
Collapse
Affiliation(s)
- Lihong Zhou
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No. 208 Huancheng East Road, Gongshu District, Hangzhou, Zhejiang, China.
| | - Xingwu Zou
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No. 208 Huancheng East Road, Gongshu District, Hangzhou, Zhejiang, China.
| | - Qin Hu
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No. 208 Huancheng East Road, Gongshu District, Hangzhou, Zhejiang, China.
| | - Haibo Hua
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No. 208 Huancheng East Road, Gongshu District, Hangzhou, Zhejiang, China.
| | - Qi Qi
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No. 208 Huancheng East Road, Gongshu District, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zhao M, Zhang Y, Chen L, Yan X, Xu T, Fu M, Han Y, Zhang Y, Zhang B, Cao J, Lin J, Shen D, Li S, Zhu C, Zhao W. Nanopore sequencing of infectious fluid is a promising supplement for gold-standard culture in real-world clinical scenario. Front Cell Infect Microbiol 2024; 14:1330788. [PMID: 38352054 PMCID: PMC10861792 DOI: 10.3389/fcimb.2024.1330788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Infectious diseases are major causes of morbidity and mortality worldwide, necessitating the rapid identification and accurate diagnosis of pathogens. While unbiased metagenomic next-generation sequencing (mNGS) has been extensively utilized in clinical pathogen identification and scientific microbiome detection, there is limited research about the application of nanopore platform-based mNGS in the diagnostic performance of various infectious fluid samples. Methods In this study, we collected 297 suspected infectious fluids from 10 clinical centers and detected them with conventional microbiology culture and nanopore platform-based mNGS. The objective was to assess detective and diagnostic performance of nanopore-sequencing technology (NST) in real-world scenarios. Results Combined with gold-standard culture and clinical adjudication, nanopore sequencing demonstrated nearly 100% positive predictive agreements in microbial-colonized sites, such as the respiratory and urinary tracts. For samples collected from initially sterile body sites, the detected microorganisms were highly suspected pathogens, and the negative predictive agreements were relatively higher than those in the microbial-colonized sites, particularly with 100% in abscess and 95.7% in cerebrospinal fluid. Furthermore, consistent performance was also observed in the identification of antimicrobial resistance genes and drug susceptibility testing of pathogenic strains of Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. Discussion Rapid NST is a promising clinical tool to supplement gold-standard culture, and it has the potential improve patient prognosis and facilitate clinical treatment of infectious diseases.
Collapse
Affiliation(s)
- Manna Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongyang Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Li Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infectious Disease, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianmin Xu
- Department of Infectious Diseases, The Third People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Maoying Fu
- Infectious Diseases Department, Kunshan First People’s Hospital, Kunshan, Jiangsu, China
| | - Yangguang Han
- Department of Infectious Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Infection Medicine, The Fifth People’s Hospital of Wuxi, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Bin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Juan Cao
- Emergency Department, Shanghai Shibei Hospital, Shanghai, China
| | - Jing Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dan Shen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Shuo Li
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
- Medical Department, Nanjing Dian Diagnostics Group Co., Ltd., Nanjing, Jiangsu, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Xu X, Bhalla N, Ståhl P, Jaldén J. Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network. BMC Bioinformatics 2023; 24:461. [PMID: 38062356 PMCID: PMC10704643 DOI: 10.1186/s12859-023-05580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Basecalling long DNA sequences is a crucial step in nanopore-based DNA sequencing protocols. In recent years, the CTC-RNN model has become the leading basecalling model, supplanting preceding hidden Markov models (HMMs) that relied on pre-segmenting ion current measurements. However, the CTC-RNN model operates independently of prior biological and physical insights. RESULTS We present a novel basecaller named Lokatt: explicit duration Markov model and residual-LSTM network. It leverages an explicit duration HMM (EDHMM) designed to model the nanopore sequencing processes. Trained on a newly generated library with methylation-free Ecoli samples and MinION R9.4.1 chemistry, the Lokatt basecaller achieves basecalling performances with a median single read identity score of 0.930, a genome coverage ratio of 99.750%, on par with existing state-of-the-art structure when trained on the same datasets. CONCLUSION Our research underlines the potential of incorporating prior knowledge into the basecalling processes, particularly through integrating HMMs and recurrent neural networks. The Lokatt basecaller showcases the efficacy of a hybrid approach, emphasizing its capacity to achieve high-quality basecalling performance while accommodating the nuances of nanopore sequencing. These outcomes pave the way for advanced basecalling methodologies, with potential implications for enhancing the accuracy and efficiency of nanopore-based DNA sequencing protocols.
Collapse
Affiliation(s)
- Xuechun Xu
- Division of Information Science and Engineering, KTH Royal Institute of Technology, 11428, Stockholm, Sweden.
| | - Nayanika Bhalla
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 17165, Stockholm, Sweden
| | - Patrik Ståhl
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 17165, Stockholm, Sweden
| | - Joakim Jaldén
- Division of Information Science and Engineering, KTH Royal Institute of Technology, 11428, Stockholm, Sweden
| |
Collapse
|
11
|
Sanchez-Vicente S, Tokarz R. Tick-Borne Co-Infections: Challenges in Molecular and Serologic Diagnoses. Pathogens 2023; 12:1371. [PMID: 38003835 PMCID: PMC10674443 DOI: 10.3390/pathogens12111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Co-infections are a poorly understood aspect of tick-borne diseases. In the United States alone, nineteen different tick-borne pathogens have been identified. The majority of these agents are transmitted by only two tick species, Ixodes scapularis and Amblyomma americanum. Surveillance studies have demonstrated the presence of multiple pathogens in individual ticks suggesting a risk of polymicrobial transmission to humans. However, relatively few studies have explored this relationship and its impact on human disease. One of the key factors for this deficiency are the intrinsic limitations associated with molecular and serologic assays employed for the diagnosis of tick-borne diseases. Limitations in the sensitivity, specificity and most importantly, the capacity for inclusion of multiple agents within a single assay represent the primary challenges for the accurate detection of polymicrobial tick-borne infections. This review will focus on outlining these limitations and discuss potential solutions for the enhanced diagnosis of tick-borne co-infections.
Collapse
Affiliation(s)
- Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Wang X, Wei X, van der Zalm MM, Zhang Z, Subramanian N, Demers AM, Walters EG, Hesseling A, Liu C. Quantitation of Circulating Mycobacterium tuberculosis Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa. ACS NANO 2023; 17:21093-21104. [PMID: 37643288 PMCID: PMC10668583 DOI: 10.1021/acsnano.3c04420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanopore sensing of proteomic biomarkers lacks accuracy due to the ultralow abundance of targets, a wide variety of interferents in clinical samples, and the mismatch between pore and analyte sizes. By converting antigens to DNA probes via click chemistry and quantifying their characteristic signals, we show a nanopore assay with several amplification mechanisms to achieve an attomolar level limit of detection that enables quantitation of the circulating Mycobacterium tuberculosis (Mtb) antigen ESAT-6/CFP-10 complex in human serum. The assay's nonsputum-based feature and low-volume sample requirements make it particularly well-suited for detecting pediatric tuberculosis (TB) disease, where establishing an accurate diagnosis is greatly complicated by the paucibacillary nature of respiratory secretions, nonspecific symptoms, and challenges with sample collection. In the clinical assessment, the assay was applied to analyze ESAT-6/CFP-10 levels in serum samples collected during baseline investigation for TB in 75 children, aged 0-12 years, enrolled in a diagnostic study conducted in Cape Town, South Africa. This nanopore assay showed superior sensitivity in children with confirmed TB (94.4%) compared to clinical "gold standard" diagnostic technologies (Xpert MTB/RIF 44.4% and Mtb culture 72.2%) and filled the diagnostic gap for children with unconfirmed TB, where these traditional technologies fell short. We envision that, in combination with automated sample processing and portable nanopore devices, this methodology will offer a powerful tool to support the diagnosis of pulmonary TB in children.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Marieke M. van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Anne-Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Division of Microbiology, Department of Laboratory Medicine, CHU Sainte-Justine, and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Elisabetta Ghimenton Walters
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Anneke Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
13
|
Ring N, Low AS, Wee B, Paterson GK, Nuttall T, Gally D, Mellanby R, Fitzgerald JR. Rapid metagenomic sequencing for diagnosis and antimicrobial sensitivity prediction of canine bacterial infections. Microb Genom 2023; 9:mgen001066. [PMID: 37471128 PMCID: PMC10438823 DOI: 10.1099/mgen.0.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is a major threat to human and animal health. There is an urgent need to ensure that antimicrobials are used appropriately to limit the emergence and impact of resistance. In the human and veterinary healthcare setting, traditional culture and antimicrobial sensitivity testing typically requires 48-72 h to identify appropriate antibiotics for treatment. In the meantime, broad-spectrum antimicrobials are often used, which may be ineffective or impact non-target commensal bacteria. Here, we present a rapid, culture-free, diagnostics pipeline, involving metagenomic nanopore sequencing directly from clinical urine and skin samples of dogs. We have planned this pipeline to be versatile and easily implementable in a clinical setting, with the potential for future adaptation to different sample types and animals. Using our approach, we can identify the bacterial pathogen present within 5 h, in some cases detecting species which are difficult to culture. For urine samples, we can predict antibiotic sensitivity with up to 95 % accuracy. Skin swabs usually have lower bacterial abundance and higher host DNA, confounding antibiotic sensitivity prediction; an additional host depletion step will likely be required during the processing of these, and other types of samples with high levels of host cell contamination. In summary, our pipeline represents an important step towards the design of individually tailored veterinary treatment plans on the same day as presentation, facilitating the effective use of antibiotics and promoting better antimicrobial stewardship.
Collapse
Affiliation(s)
- Natalie Ring
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Alison S. Low
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bryan Wee
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Gavin K. Paterson
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David Gally
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Mellanby
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
14
|
Tong Z, Zhou X, Chu Y, Zhang T, Zhang J, Zhao X, Wang Z, Ding R, Meng Q, Yu J, Wang J, Kang Y. Implications of oral streptococcal bacteriophages in autism spectrum disorder. NPJ Biofilms Microbiomes 2022; 8:91. [DOI: 10.1038/s41522-022-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractGrowing evidence suggests altered oral and gut microbiota in autism spectrum disorder (ASD), but little is known about the alterations and roles of phages, especially within the oral microbiota in ASD subjects. We enrolled ASD (n = 26) and neurotypical subjects (n = 26) with their oral hygiene controlled, and the metagenomes of both oral and fecal samples (n = 104) are shotgun-sequenced and compared. We observe extensive and diverse oral phageome comparable to that of the gut, and clear signals of mouth-to-gut phage strain transfer within individuals. However, the overall phageomes of the two sites are widely different and show even less similarity in the oral communities between ASD and control subjects. The ASD oral phageome exhibits significantly reduced abundance and alpha diversity, but the Streptococcal phages there are atypically enriched, often dominating the community. The over-representation of Streptococcal phages is accompanied by enriched oral Streptococcal virulence factors and Streptococcus bacteria, all exhibiting a positive correlation with the severity of ASD clinical manifestations. These changes are not observed in the parallel sampling of the gut flora, suggesting a previously unknown oral-specific association between the excessive Streptococcal phage enrichment and ASD pathogenesis. The findings provide new evidence for the independent microbiome-mouth-brain connection, deepen our understanding of how the growth dynamics of bacteriophages and oral microbiota contribute to ASD, and point to novel effective therapeutics.
Collapse
|
15
|
Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells 2022; 11:cells11193091. [PMID: 36231053 PMCID: PMC9563262 DOI: 10.3390/cells11193091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Health is influenced by how the gut microbiome develops as a result of external and internal factors, such as nutrition, the environment, medication use, age, sex, and genetics. Alpha and beta diversity metrics and (enterotype) clustering methods are commonly employed to perform population studies and to analyse the effects of various treatments, yet, with the continuous development of (new) sequencing technologies, and as various omics fields as a result become more accessible for investigation, increasingly sophisticated methodologies are needed and indeed being developed in order to disentangle the complex ways in which the gut microbiome and health are intertwined. Diseases of affluence, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD), are commonly linked to species associated with the Bacteroides enterotype(s) and a decline of various (beneficial) complex microbial trophic networks, which are in turn linked to the aforementioned factors. In this review, we (1) explore the effects that some of the most common internal and external factors have on the gut microbiome composition and how these in turn relate to T2D and CVD, and (2) discuss research opportunities enabled by and the limitations of some of the latest technical developments in the microbiome sector, including the use of artificial intelligence (AI), strain tracking, and peak to trough ratios.
Collapse
|
16
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
18
|
Hu Y, Zhang Y, Liu Y, Gao Y, San T, Li X, Song S, Yan B, Zhao Z. Advances in application of single-cell RNA sequencing in cardiovascular research. Front Cardiovasc Med 2022; 9:905151. [PMID: 35958408 PMCID: PMC9360414 DOI: 10.3389/fcvm.2022.905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides high-resolution information on transcriptomic changes at the single-cell level, which is of great significance for distinguishing cell subtypes, identifying stem cell differentiation processes, and identifying targets for disease treatment. In recent years, emerging single-cell RNA sequencing technologies have been used to make breakthroughs regarding decoding developmental trajectories, phenotypic transitions, and cellular interactions in the cardiovascular system, providing new insights into cardiovascular disease. This paper reviews the technical processes of single-cell RNA sequencing and the latest progress based on single-cell RNA sequencing in the field of cardiovascular system research, compares single-cell RNA sequencing with other single-cell technologies, and summarizes the extended applications and advantages and disadvantages of single-cell RNA sequencing. Finally, the prospects for applying single-cell RNA sequencing in the field of cardiovascular research are discussed.
Collapse
Affiliation(s)
- Yue Hu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Yutong Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Tiantian San
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaoying Li
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Sensen Song
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Binglong Yan
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- *Correspondence: Zhuo Zhao
| |
Collapse
|
19
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
20
|
Çelik I, Keskin E. Revealing the Microbiome of Four Different Thermal Springs in Turkey with Environmental DNA Metabarcoding. BIOLOGY 2022; 11:998. [PMID: 36101376 PMCID: PMC9311576 DOI: 10.3390/biology11070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
One of the most significant challenges for detecting microbial life in thermal springs by conventional techniques such as culturing is these places' physicochemical (temperature, heavy metal content, pH, etc.) conditions. Data from several studies suggest that high-throughput DNA sequencing technologies can be used to perform more accurate and detailed microbiome analyses. The primary aim of this paper was to determine the microbiome in the thermal source by metabarcoding environmental DNA isolated from four different sources and reveal the reflection of differences caused by temperature and chemical content on the microbiome. DNA was extracted from water filtered with enclosed filters and using the Illumina high-throughput sequencing platform, V3 and V4 regions of the 16S rRNA gene were sequenced. The results showed a correlation between physicochemical conditions and microorganism composition of four different thermal springs. Springs with extremely high temperature (89-90 °C) were dominated by hyperthermophiles such as Hydrogenobacter and Thermus, while a spring with a high temperature (52 °C) was dominated by thermophiles such as Thermoanaerobaculum and Desulfurispora, and a spring with a low temperature (26 °C) and high salinity was dominated by halophiles and sulfur-oxidizers such as Hydrogenovibrio and Sulfirimonas. With this research, we observed many manipulable steps according to the work of interest. This study sought to obtain data that will help decide the right gene region and choose the optimal bioinformatic pipeline.
Collapse
Affiliation(s)
- Işılay Çelik
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey;
- Evolutionary Genetics Laboratory (eGL), Department of Fisheries and Aquaculture, Agricultural Faculty, Ankara University, Ankara 06135, Turkey
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Department of Fisheries and Aquaculture, Agricultural Faculty, Ankara University, Ankara 06135, Turkey
| |
Collapse
|
21
|
Zhang L, Huang W, Zhang S, Li Q, Wang Y, Chen T, Jiang H, Kong D, Lv Q, Zheng Y, Ren Y, Liu P, Jiang Y, Chen Y. Rapid Detection of Bacterial Pathogens and Antimicrobial Resistance Genes in Clinical Urine Samples With Urinary Tract Infection by Metagenomic Nanopore Sequencing. Front Microbiol 2022; 13:858777. [PMID: 35655992 PMCID: PMC9152355 DOI: 10.3389/fmicb.2022.858777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common acquired bacterial infections in humans. The current gold standard method for identification of uropathogens in clinical laboratories is cultivation. However, culture-based assays have substantial drawbacks, including long turnaround time and limited culturability of many potential pathogens. Nanopore sequencing technology can overcome these limitations and detect pathogens while also providing reliable predictions of drug susceptibility in clinical samples. Here, we optimized a metagenomic nanopore sequencing (mNPS) test for pathogen detection and identification in urine samples of 76 patients with acute uncomplicated UTIs. We first used twenty of these samples to show that library preparation by the PCR Barcoding Kit (PBK) led to the highest agreement of positive results with gold standard clinical culture tests, and enabled antibiotic resistance detection in downstream analyses. We then compared the detection results of mNPS with those of culture-based diagnostics and found that mNPS sensitivity and specificity of detection were 86.7% [95% confidence interval (CI), 73.5-94.1%] and 96.8% (95% CI, 82.4-99.9%), respectively, indicating that the mNPS method is a valid approach for rapid and specific detection of UTI pathogens. The mNPS results also performed well at predicting antibiotic susceptibility phenotypes. These results demonstrate that our workflow can accurately diagnose UTI-causative pathogens and enable successful prediction of drug-resistant phenotypes within 6 h of sample receipt. Rapid mNPS testing is thus a promising clinical diagnostic tool for infectious diseases, based on clinical urine samples from UTI patients, and shows considerable potential for application in other clinical infections.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Science, Yantai University, Yantai, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shengwei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Department of Clinical Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ting Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ying Chen
- College of Life Science, Yantai University, Yantai, China
| |
Collapse
|
22
|
Liao YC, Wu HC, Liou CH, Lauderdale TLY, Huang IW, Lai JF, Chen FJ. Rapid and Routine Molecular Typing Using Multiplex Polymerase Chain Reaction and MinION Sequencer. Front Microbiol 2022; 13:875347. [PMID: 35422786 PMCID: PMC9002326 DOI: 10.3389/fmicb.2022.875347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Molecular typing is an essential tool that has been extensively applied in laboratories as well as in clinical settings. Next-generation sequencing technologies promise high-throughput and cost-effective molecular applications; however, the accessibility of these technologies is limited due to the high capital cost. Oxford Nanopore Technologies (ONT) offers a MinION device with the advantages of real-time data analysis, rapid library preparation, and low cost per test. However, the advantages of the MinION device are often overshadowed by its lower raw accuracy. Herein, we present a concise multilocus sequence typing protocol of Staphylococcus aureus using multiplex polymerase chain reaction and Rapid Barcoding Kit for barcoding and MinION device for sequencing. Moreover, to clarify the effects of carryover DNA on tasks that require high sequence accuracy, we used the MinION flow cell in successive runs of washing and reusing. Our results revealed that the MinION flow cell could achieve accurate typing of a total of 467 samples with 3,269 kilobase-long genes within a total of 5 runs. This thus demonstrates the effectiveness of a portable nanopore MinION sequencer in providing accurate, rapid, and routine molecular typing.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ci-Hong Liou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Tsai-Ling Yang Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, Grys TE, Patel R, Truty MJ, Chia N. Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections. mSphere 2022; 7:e0096421. [PMID: 35171692 PMCID: PMC8849348 DOI: 10.1128/msphere.00964-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Emma Whittle
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Jennifer A. Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeonsgrid.417954.a, Chicago, Illinois, USA
| | - Michael L. Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Phoenix, Arizona, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Mark J. Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| |
Collapse
|
24
|
End-User Perspectives on Using Quantitative Real-Time PCR and Genomic Sequencing in the Field. Trop Med Infect Dis 2022; 7:tropicalmed7010006. [PMID: 35051122 PMCID: PMC8780823 DOI: 10.3390/tropicalmed7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Quantitative real-time PCR and genomic sequencing have become mainstays for performing molecular detection of biological threat agents in the field. There are notional assessments of the benefits, disadvantages, and challenges that each of these technologies offers according to findings in the literature. However, direct comparison between these two technologies in the context of field-forward operations is lacking. Most market surveys, whether published in print form or provided online, are directed to product manufacturers who can address their respective specifications and operations. One method for comparing these technologies is surveying end-users who are best suited for discussing operational capabilities, as they have hands-on experience with state-of-the-art molecular detection platforms and protocols. These end-users include operators in military defense and first response, as well as various research scientists in the public sector such as government and service laboratories, private sector, and civil society such as academia and nonprofit organizations performing method development and executing these protocols in the field. Our objective was to initiate a survey specific to end-users and their feedback. We developed a questionnaire that asked respondents to (1) determine what technologies they currently use, (2) identify the settings where the technologies are used, whether lab-based or field-forward, and (3) rate the technologies according to a set list of criteria. Of particular interest are assessments of sensitivity, specificity, reproducibility, scalability, portability, and discovery power. This article summarizes the findings from the end-user perspective, highlighting technical and operational challenges.
Collapse
|
25
|
Robertson JW, Ghimire M, Reiner JE. Nanopore sensing: A physical-chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183644. [PMID: 33989531 PMCID: PMC9793329 DOI: 10.1016/j.bbamem.2021.183644] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
Collapse
Affiliation(s)
- Joseph W.F. Robertson
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD. 20899, correspondence to:
| | - Madhav Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|