1
|
Vornweg J, Jacob CR. Protein-Ligand Interaction Energies from Quantum-Chemical Fragmentation Methods: Upgrading the MFCC-Scheme with Many-Body Contributions. J Phys Chem B 2024; 128:11597-11606. [PMID: 39550698 PMCID: PMC11613497 DOI: 10.1021/acs.jpcb.4c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Quantum-chemical fragmentation methods offer an attractive approach for the accurate calculation of protein-ligand interaction energies. While the molecular fractionation with conjugate caps (MFCC) scheme offers a rather straightforward approach for this purpose, its accuracy is often not sufficient. Here, we upgrade the MFCC scheme for the calculation of protein-ligand interactions by including many-body contributions. The resulting fragmentation scheme is an extension of our previously developed MFCC-MBE(2) scheme [J. Comput. Chem. 2023, 44, 1634-1644]. For a diverse test set of protein-ligand complexes, we demonstrate that by upgrading the MFCC scheme with many-body contributions, the error in protein-ligand interaction energies can be reduced significantly, and one generally achieves errors below 20 kJ/mol. Our scheme allows for systematically reducing these errors by including higher-order many-body contributions. As it combines the use of single amino acid fragments with high accuracy, our scheme provides an ideal starting point for the parametrization of accurate machine learning potentials for proteins and protein-ligand interactions.
Collapse
Affiliation(s)
- Johannes
R. Vornweg
- Institute of Physical and Theoretical
Chemistry, Technische Universität
Braunschweig, Gaußstr.
17, Braunschweig 38106, Germany
| | - Christoph R. Jacob
- Institute of Physical and Theoretical
Chemistry, Technische Universität
Braunschweig, Gaußstr.
17, Braunschweig 38106, Germany
| |
Collapse
|
2
|
Giese TJ, Zeng J, Lerew L, McCarthy E, Tao Y, Ekesan Ş, York DM. Software Infrastructure for Next-Generation QM/MM-ΔMLP Force Fields. J Phys Chem B 2024; 128:6257-6271. [PMID: 38905451 PMCID: PMC11414325 DOI: 10.1021/acs.jpcb.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We present software infrastructure for the design and testing of new quantum mechanical/molecular mechanical and machine-learning potential (QM/MM-ΔMLP) force fields for a wide range of applications. The software integrates Amber's molecular dynamics simulation capabilities with fast, approximate quantum models in the xtb package and machine-learning potential corrections in DeePMD-kit. The xtb package implements the recently developed density-functional tight-binding QM models with multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is enhanced by including machine-learning correction potentials (ΔMLPs) enabled through an interface with the DeePMD-kit software. The goal of this paper is to present and validate the implementation of this software infrastructure in molecular dynamics and free energy simulations. The utility of the new infrastructure is demonstrated in proof-of-concept example applications. The software elements presented here are open source and freely available. Their interface provides a powerful enabling technology for the design of new QM/MM-ΔMLP models for studying a wide range of problems, including biomolecular reactivity and protein-ligand binding.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lauren Lerew
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yujun Tao
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Tao Y, Giese TJ, Ekesan Ş, Zeng J, Aradi B, Hourahine B, Aktulga HM, Götz AW, Merz KM, York DM. Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials. J Chem Phys 2024; 160:224104. [PMID: 38856060 DOI: 10.1063/5.0211276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform "system calls" and enable the incorporation of long-range Ewald electrostatics into the external software's self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM-ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client-server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM-ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.
Collapse
Affiliation(s)
- Yujun Tao
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, D-28334 Bremen, Germany
| | - Ben Hourahine
- SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Hasan Metin Aktulga
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Tao Y, Giese TJ, York DM. Electronic and Nuclear Quantum Effects on Proton Transfer Reactions of Guanine-Thymine (G-T) Mispairs Using Combined Quantum Mechanical/Molecular Mechanical and Machine Learning Potentials. Molecules 2024; 29:2703. [PMID: 38893576 PMCID: PMC11173453 DOI: 10.3390/molecules29112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Rare tautomeric forms of nucleobases can lead to Watson-Crick-like (WC-like) mispairs in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR studies show evidence for the existence of short-time WC-like guanine-thymine (G-T) mispairs; however, the mechanism of proton transfer and the degree to which nuclear quantum effects play a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is required to achieve high precision in the free energy barriers. To address this problem, we develop a QM/MM machine learning potential correction (QM/MM-ΔMLP) that is able to improve the computational efficiency, greatly extend the accessible time scales of the simulations, and enable practical application of path integral molecular dynamics to examine nuclear quantum effects. We find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our results enable a rationalization of observed experimental data and the prediction of populations of rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.
Collapse
|
5
|
Zhao N, Wu T, Wang W, Zhang L, Gong X. Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure. Interdiscip Sci 2024; 16:261-288. [PMID: 38955920 DOI: 10.1007/s12539-024-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Tong Wu
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Wenda Wang
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Lunchuan Zhang
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, China.
| |
Collapse
|
6
|
Wen M, Chang X, Xu Y, Chen D, Chu Q. Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential. Phys Chem Chem Phys 2024; 26:9984-9997. [PMID: 38477375 DOI: 10.1039/d4cp00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Molecular simulations of high energetic materials (HEMs) are limited by efficiency and accuracy. Recently, neural network potential (NNP) models have achieved molecular simulations of millions of atoms while maintaining the accuracy of density functional theory (DFT) levels. Herein, an NNP model covering typical HEMs containing C, H, N, and O elements is developed. The mechanical and decomposition properties of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), hexahydro-1,3,5-trinitro-1,3,5-triazine (HMX), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) are determined by employing the molecular dynamics (MD) simulations based on the NNP model. The calculated results show that the mechanical properties of α-RDX, β-HMX, and ε-CL-20 agree with previous experiments and theoretical results, including cell parameters, equations of state, and elastic constants. In the thermal decomposition simulations, it is also found that the initial decomposition reactions of the three crystals are N-NO2 homolysis, corresponding radical intermediates formation, and NO2-induced reactions. This decomposition trajectory is mainly divided into two stages separating from the peak of NO2: pyrolysis and oxidation. Overall, the NNP model for C/H/N/O elements in this work is an alternative reactive force field for RDX, HMX, and CL-20 HEMs, and it opens up new potential for future kinetic study of nitramine explosives.
Collapse
Affiliation(s)
- Mingjie Wen
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaoya Chang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yabei Xu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dongping Chen
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Qingzhao Chu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
7
|
Wang Z, Chen A, Tao K, Han Y, Li J. MatGPT: A Vane of Materials Informatics from Past, Present, to Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306733. [PMID: 37813548 DOI: 10.1002/adma.202306733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
Abstract
Combining materials science, artificial intelligence (AI), physical chemistry, and other disciplines, materials informatics is continuously accelerating the vigorous development of new materials. The emergence of "GPT (Generative Pre-trained Transformer) AI" shows that the scientific research field has entered the era of intelligent civilization with "data" as the basic factor and "algorithm + computing power" as the core productivity. The continuous innovation of AI will impact the cognitive laws and scientific methods, and reconstruct the knowledge and wisdom system. This leads to think more about materials informatics. Here, a comprehensive discussion of AI models and materials infrastructures is provided, and the advances in the discovery and design of new materials are reviewed. With the rise of new research paradigms triggered by "AI for Science", the vane of materials informatics: "MatGPT", is proposed and the technical path planning from the aspects of data, descriptors, generative models, pretraining models, directed design models, collaborative training, experimental robots, as well as the efforts and preparations needed to develop a new generation of materials informatics, is carried out. Finally, the challenges and constraints faced by materials informatics are discussed, in order to achieve a more digital, intelligent, and automated construction of materials informatics with the joint efforts of more interdisciplinary scientists.
Collapse
Affiliation(s)
- Zhilong Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - An Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kehao Tao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqiang Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Tu H, Han Y, Wang Z, Chen A, Tao K, Ye S, Wang S, Wei Z, Li J. RotNet: A Rotationally Invariant Graph Neural Network for Quantum Mechanical Calculations. SMALL METHODS 2023:e2300534. [PMID: 37727096 DOI: 10.1002/smtd.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Deep learning has proven promising in biological and chemical applications, aiding in accurate predictions of properties such as atomic forces, energies, and material band gaps. Traditional methods with rotational invariance, one of the most crucial physical laws for predictions made by machine learning, have relied on Fourier transforms or specialized convolution filters, leading to complex model design and reduced accuracy and efficiency. However, models without rotational invariance exhibit poor generalization ability across datasets. Addressing this contradiction, this work proposes a rotationally invariant graph neural network, named RotNet, for accurate and accelerated quantum mechanical calculations that can overcome the generalization deficiency caused by rotations of molecules. RotNet ensures rotational invariance through an effective transformation and learns distance and angular information from atomic coordinates. Benchmark experiments on three datasets (protein fragments, electronic materials, and QM9) demonstrate that the proposed RotNet framework outperforms popular baselines and generalizes well to spatial data with varying rotations. The high accuracy, efficiency, and fast convergence of RotNet suggest that it has tremendous potential to significantly facilitate studies of protein dynamics simulation and materials engineering while maintaining physical plausibility.
Collapse
Affiliation(s)
- Hongwei Tu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqiang Han
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilong Wang
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - An Chen
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kehao Tao
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Simin Ye
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiwei Wang
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinjin Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L, Li Z, Shi S, Wang Y, Ye H, Tuo P, Yang J, Ding Y, Li Y, Tisi D, Zeng Q, Bao H, Xia Y, Huang J, Muraoka K, Wang Y, Chang J, Yuan F, Bore SL, Cai C, Lin Y, Wang B, Xu J, Zhu JX, Luo C, Zhang Y, Goodall REA, Liang W, Singh AK, Yao S, Zhang J, Wentzcovitch R, Han J, Liu J, Jia W, York DM, E W, Car R, Zhang L, Wang H. DeePMD-kit v2: A software package for deep potential models. J Chem Phys 2023; 159:054801. [PMID: 37526163 PMCID: PMC10445636 DOI: 10.1063/5.0155600] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
Collapse
Affiliation(s)
- Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - Denghui Lu
- HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Pinghui Mo
- College of Electrical and Information Engineering, Hunan University, Changsha, People’s Republic of China
| | - Zeyu Li
- Yuanpei College, Peking University, Beijing 100871, People’s Republic of China
| | - Yixiao Chen
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08540, USA
| | - Marián Rynik
- Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia
| | - Li’ang Huang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | | | - Shaochen Shi
- ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People’s Republic of China
| | | | - Haotian Ye
- Yuanpei College, Peking University, Beijing 100871, People’s Republic of China
| | - Ping Tuo
- AI for Science Institute, Beijing 100080, People’s Republic of China
| | - Jiabin Yang
- Baidu, Inc., Beijing, People’s Republic of China
| | | | - Yifan Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Qiyu Zeng
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
| | | | - Yu Xia
- ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People’s Republic of China
| | | | - Koki Muraoka
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yibo Wang
- DP Technology, Beijing 100080, People’s Republic of China
| | | | - Fengbo Yuan
- DP Technology, Beijing 100080, People’s Republic of China
| | - Sigbjørn Løland Bore
- Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | | | - Yinnian Lin
- Wangxuan Institute of Computer Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Bo Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| | - Jia-Xin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Chenxing Luo
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Yuzhi Zhang
- DP Technology, Beijing 100080, People’s Republic of China
| | | | - Wenshuo Liang
- DP Technology, Beijing 100080, People’s Republic of China
| | - Anurag Kumar Singh
- Department of Data Science, Indian Institute of Technology, Palakkad, Kerala, India
| | - Sikai Yao
- DP Technology, Beijing 100080, People’s Republic of China
| | - Jingchao Zhang
- NVIDIA AI Technology Center (NVAITC), Santa Clara, California 95051, USA
| | | | - Jiequn Han
- Center for Computational Mathematics, Flatiron Institute, New York, New York 10010, USA
| | - Jie Liu
- College of Electrical and Information Engineering, Hunan University, Changsha, People’s Republic of China
| | | | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Han Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Jayasekara SK, Joni HD, Jayantha B, Dissanayake L, Mandrell C, Sinharage MM, Molitor R, Jayasekara T, Sivakumar P, Jayakody LN. Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput Struct Biotechnol J 2023; 21:3513-3521. [PMID: 37484494 PMCID: PMC10362282 DOI: 10.1016/j.csbj.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Polyethylene terephthalate (PET) is the largest produced polyester globally, and less than 30% of all the PET produced globally (∼6 billion pounds annually) is currently recycled into lower-quality products. The major drawbacks in current recycling methods (mechanical and chemical), have inspired the exploration of potentially efficient and sustainable PET depolymerization using biological approaches. Researchers have discovered efficient PET hydrolyzing enzymes in the plastisphere and have demonstrated the selective degradation of PET to original monomers thus enabling biological recycling or upcycling. However, several significant hurdles such as the less efficiency of the hydrolytic reaction, low thermostability of the enzymes, and the inability of the enzyme to depolymerize crystalline PET must be addressed in order to establish techno-economically feasible commercial-scale biological PET recycling or upcycling processes. Researchers leverage a synthetic biology-based design; build, test, and learn (DBTL) methodology to develop commercially applicable efficient PET hydrolyzing enzymes through 1) high-throughput metagenomic and proteomic approaches to discover new PET hydrolyzing enzymes with superior properties: and, 2) enzyme engineering approaches to modify and optimize PET hydrolyzing properties. Recently, in-silico platforms including molecular mechanics and machine learning concepts are emerging as innovative tools for the development of more efficient and effective PET recycling through the exploration of novel mutations in PET hydrolyzing enzymes. In-silico-guided PET hydrolyzing enzyme engineering with DBTL cycles enables the rapid development of efficient variants of enzymes over tedious conventional enzyme engineering methods such as random or directed evolution. This review highlights the potential of in-silico-guided PET degrading enzyme engineering to create more efficient variants, including Ideonella sakaiensis PETase (IsPETase) and leaf-branch compost cutinases (LCC). Furthermore, future research prospects are discussed to enable a sustainable circular economy through the bioconversion of PET to original or high-value platform chemicals.
Collapse
Affiliation(s)
- Sandhya K. Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Hriday Dhar Joni
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Bhagya Jayantha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Christopher Mandrell
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Manuka M.S. Sinharage
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Ryan Molitor
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Thushari Jayasekara
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Poopalasingam Sivakumar
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N. Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA
| |
Collapse
|
11
|
Tu H, Han Y, Wang Z, Li J. Clustered tree regression to learn protein energy change with mutated amino acid. Brief Bioinform 2022; 23:6702668. [PMID: 36124753 DOI: 10.1093/bib/bbac374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Accurate and effective prediction of mutation-induced protein energy change remains a great challenge and of great interest in computational biology. However, high resource consumption and insufficient structural information of proteins severely limit the experimental techniques and structure-based prediction methods. Here, we design a structure-independent protocol to accurately and effectively predict the mutation-induced protein folding free energy change with only sequence, physicochemical and evolutionary features. The proposed clustered tree regression protocol is capable of effectively exploiting the inherent data patterns by integrating unsupervised feature clustering by K-means and supervised tree regression using XGBoost, and thus enabling fast and accurate protein predictions with different mutations, with an average Pearson correlation coefficient of 0.83 and an average root-mean-square error of 0.94kcal/mol. The proposed sequence-based method not only eliminates the dependence on protein structures, but also has potential applications in protein predictions with rare structural information.
Collapse
Affiliation(s)
- Hongwei Tu
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqiang Han
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilong Wang
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinjin Li
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Wang Y, Fass J, Kaminow B, Herr JE, Rufa D, Zhang I, Pulido I, Henry M, Bruce Macdonald HE, Takaba K, Chodera JD. End-to-end differentiable construction of molecular mechanics force fields. Chem Sci 2022; 13:12016-12033. [PMID: 36349096 PMCID: PMC9600499 DOI: 10.1039/d2sc02739a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023] Open
Abstract
Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular modeling and drug discovery, from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules (atom types) for applying parameters to small molecules or biopolymers, making it difficult to optimize both types and parameters to fit quantum chemical or physical property data. Here, we propose an alternative approach that uses graph neural networks to perceive chemical environments, producing continuous atom embeddings from which valence and nonbonded parameters can be predicted using invariance-preserving layers. Since all stages are built from smooth neural functions, the entire process-spanning chemical perception to parameter assignment-is modular and end-to-end differentiable with respect to model parameters, allowing new force fields to be easily constructed, extended, and applied to arbitrary molecules. We show that this approach is not only sufficiently expressive to reproduce legacy atom types, but that it can learn to accurately reproduce and extend existing molecular mechanics force fields. Trained with arbitrary loss functions, it can construct entirely new force fields self-consistently applicable to both biopolymers and small molecules directly from quantum chemical calculations, with superior fidelity than traditional atom or parameter typing schemes. When adapted to simultaneously fit partial charge models, espaloma delivers high-quality partial atomic charges orders of magnitude faster than current best-practices with low inaccuracy. When trained on the same quantum chemical small molecule dataset used to parameterize the Open Force Field ("Parsley") openff-1.2.0 small molecule force field augmented with a peptide dataset, the resulting espaloma model shows superior accuracy vis-á-vis experiments in computing relative alchemical free energy calculations for a popular benchmark. This approach is implemented in the free and open source package espaloma, available at https://github.com/choderalab/espaloma.
Collapse
Affiliation(s)
- Yuanqing Wang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Physiology, Biophysics and System Biology PhD Program, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA,MFA Program in Creative Writing, Division of Humanities and Arts, City College of New York, City University of New YorkNew York 10031NYUSA
| | - Josh Fass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Benjamin Kaminow
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - John E. Herr
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Dominic Rufa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell UniversityNew York 10065NYUSA
| | - Iván Pulido
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Mike Henry
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Hannah E. Bruce Macdonald
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| | - Kenichiro Takaba
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA,Pharmaceutical Research Center, Advanced Drug Discovery, Asahi Kasei Pharma CorporationShizuoka 410-2321Japan
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew York 10065NYUSA
| |
Collapse
|
13
|
Han Y, Wang Z, Chen A, Ali I, Cai J, Ye S, Li J. An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds. Brief Bioinform 2022; 23:6509736. [PMID: 35039818 DOI: 10.1093/bib/bbab590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/15/2023] Open
Abstract
Accurate simulation of protein folding is a unique challenge in understanding the physical process of protein folding, with important implications for protein design and drug discovery. Molecular dynamics simulation strongly requires advanced force fields with high accuracy to achieve correct folding. However, the current force fields are inaccurate, inapplicable and inefficient. We propose a machine learning protocol, the inductive transfer learning force field (ITLFF), to construct protein force fields in seconds with any level of accuracy from a small dataset. This process is achieved by incorporating an inductive transfer learning algorithm into deep neural networks, which learn knowledge of any high-level calculations from a large dataset of low-level method. Here, we use a double-hybrid density functional theory (DFT) as a case functional, but ITLFF is suitable for any high-precision functional. The performance of the selected 18 proteins indicates that compared with the fragment-based double-hybrid DFT algorithm, the force field constructed by ITLFF achieves considerable accuracy with a mean absolute error of 0.0039 kcal/mol/atom for energy and a root mean square error of 2.57 $\mathrm{kcal}/\mathrm{mol}/{\AA}$ for force, and it is more than 30 000 times faster and obtains more significant efficiency benefits as the system increases. The outstanding performance of ITLFF provides promising prospects for accurate and efficient protein dynamic simulations and makes an important step toward protein folding simulation. Due to the ability of ITLFF to utilize the knowledge acquired in one task to solve related problems, it is also applicable for various problems in biology, chemistry and material science.
Collapse
Affiliation(s)
- Yanqiang Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - An Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imran Ali
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfei Cai
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simin Ye
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Han Y, Luo H, Lu Q, Liu Z, Liu J, Zhang J, Wei Z, Li J. Quantum Mechanical-Based Stability Evaluation of Crystal Structures for HIV-Targeted Drug Cabotegravir. Molecules 2021; 26:molecules26237178. [PMID: 34885762 PMCID: PMC8659202 DOI: 10.3390/molecules26237178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
The long-acting parenteral formulation of the HIV integrase inhibitor cabotegravir (GSK744) is currently being developed to prevent HIV infections, benefiting from infrequent dosing and high efficacy. The crystal structure can affect the bioavailability and efficacy of cabotegravir. However, the stability determination of crystal structures of GSK744 have remained a challenge. Here, we introduced an ab initio protocol to determine the stability of the crystal structures of pharmaceutical molecules, which were obtained from crystal structure prediction process starting from the molecular diagram. Using GSK744 as a case study, the ab initio predicted that Gibbs free energy provides reliable further refinement of the predicted crystal structures and presents its capability for becoming a crystal stability determination approach in the future. The proposed work can assist in the comprehensive screening of pharmaceutical design and can provide structural predictions and stability evaluation for pharmaceutical crystals.
Collapse
Affiliation(s)
- Yanqiang Han
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Hongyuan Luo
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Qianqian Lu
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
| | - Zeying Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Correspondence: (J.L.); (Z.W.); (J.L.)
| | - Jiarui Zhang
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Correspondence: (J.L.); (Z.W.); (J.L.)
| | - Jinjin Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (Y.H.); (Z.L.)
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (Q.L.)
- Correspondence: (J.L.); (Z.W.); (J.L.)
| |
Collapse
|