1
|
Basith S, Sangaraju VK, Manavalan B, Lee G. mHPpred: Accurate identification of peptide hormones using multi-view feature learning. Comput Biol Med 2024; 183:109297. [PMID: 39442438 DOI: 10.1016/j.compbiomed.2024.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Peptide hormones were first used in medicine in the early 20th century, with the pivotal event being the isolation and purification of insulin in 1921. These hormones are integral to a sophisticated system that emerged early in evolution to regulate growth, development, and homeostasis. They serve as targeted signaling molecules that transfer specific information between cells and organs, ensuring coordinated and precise physiological responses. While experimental methods for identifying peptide hormones present challenges such as low abundance, stability issues, and complexity, computational methods offer promising alternatives. Advances in machine learning and bioinformatics have facilitated the prediction of peptide hormones, further enhancing their therapeutic potential. In this study, we explored three different computational frameworks for peptide hormone identification and determined that the meta-approach was the most suitable. Firstly, we evaluated the discriminative power of 26 feature descriptors using a series of baseline models and identified seven feature descriptors with high predictive potential. Through a systematic approach, we then selected the top 20 performing baseline models and integrated their predicted probabilities to train a meta-model, leveraging the strengths of multiple prediction strategies. Our final light gradient boosting-based meta-model, mHPpred, significantly outperformed the existing method, HOPPred, on both benchmarking and independent datasets. Notably, mHPpred also demonstrated superior performance compared to the hybrid and integrative framework approaches employed in this study. This superiority demonstrates the effectiveness of our multi-view feature learning strategy in capturing discriminative features and providing a more accurate prediction model for peptide hormones. mHPpred is publicly accessible at: https://balalab-skku.org/mHPpred.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Vinoth Kumar Sangaraju
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
2
|
Sabir MJ, Kamli MR, Atef A, Alhibshi AM, Edris S, Hajarah NH, Bahieldin A, Manavalan B, Sabir JSM. Computational prediction of phosphorylation sites of SARS-CoV-2 infection using feature fusion and optimization strategies. Methods 2024; 229:1-8. [PMID: 38768932 DOI: 10.1016/j.ymeth.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
SARS-CoV-2's global spread has instigated a critical health and economic emergency, impacting countless individuals. Understanding the virus's phosphorylation sites is vital to unravel the molecular intricacies of the infection and subsequent changes in host cellular processes. Several computational methods have been proposed to identify phosphorylation sites, typically focusing on specific residue (S/T) or Y phosphorylation sites. Unfortunately, current predictive tools perform best on these specific residues and may not extend their efficacy to other residues, emphasizing the urgent need for enhanced methodologies. In this study, we developed a novel predictor that integrated all the residues (STY) phosphorylation sites information. We extracted ten different feature descriptors, primarily derived from composition, evolutionary, and position-specific information, and assessed their discriminative power through five classifiers. Our results indicated that Light Gradient Boosting (LGB) showed superior performance, and five descriptors displayed excellent discriminative capabilities. Subsequently, we identified the top two integrated features have high discriminative capability and trained with LGB to develop the final prediction model, LGB-IPs. The proposed approach shows an excellent performance on 10-fold cross-validation with an ACC, MCC, and AUC values of 0.831, 0.662, 0.907, respectively. Notably, these performances are replicated in the independent evaluation. Consequently, our approach may provide valuable insights into the phosphorylation mechanisms in SARS-CoV-2 infection for biomedical researchers.
Collapse
Affiliation(s)
- Mumdooh J Sabir
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Atef
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alawiah M Alhibshi
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Edris
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nahid H Hajarah
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Pham NT, Zhang Y, Rakkiyappan R, Manavalan B. HOTGpred: Enhancing human O-linked threonine glycosylation prediction using integrated pretrained protein language model-based features and multi-stage feature selection approach. Comput Biol Med 2024; 179:108859. [PMID: 39029431 DOI: 10.1016/j.compbiomed.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
O-linked glycosylation is a complex post-translational modification (PTM) in human proteins that plays a critical role in regulating various cellular metabolic and signaling pathways. In contrast to N-linked glycosylation, O-linked glycosylation lacks specific sequence features and maintains an unstable core structure. Identifying O-linked threonine glycosylation sites (OTGs) remains challenging, requiring extensive experimental tests. While bioinformatics tools have emerged for predicting OTGs, their reliance on limited conventional features and absence of well-defined feature selection strategies limit their effectiveness. To address these limitations, we introduced HOTGpred (Human O-linked Threonine Glycosylation predictor), employing a multi-stage feature selection process to identify the optimal feature set for accurately identifying OTGs. Initially, we assessed 25 different feature sets derived from various pretrained protein language model (PLM)-based embeddings and conventional feature descriptors using nine classifiers. Subsequently, we integrated the top five embeddings linearly and determined the most effective scoring function for ranking hybrid features, identifying the optimal feature set through a process of sequential forward search. Among the classifiers, the extreme gradient boosting (XGBT)-based model, using the optimal feature set (HOTGpred), achieved 92.03 % accuracy on the training dataset and 88.25 % on the balanced independent dataset. Notably, HOTGpred significantly outperformed the current state-of-the-art methods on both the balanced and imbalanced independent datasets, demonstrating its superior prediction capabilities. Additionally, SHapley Additive exPlanations (SHAP) and ablation analyses were conducted to identify the features contributing most significantly to HOTGpred. Finally, we developed an easy-to-navigate web server, accessible at https://balalab-skku.org/HOTGpred/, to support glycobiologists in their research on glycosylation structure and function.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Ying Zhang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Rajan Rakkiyappan
- Department of Mathematics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Yao L, Xie P, Guan J, Chung CR, Huang Y, Pang Y, Wu H, Chiang YC, Lee TY. CapsEnhancer: An Effective Computational Framework for Identifying Enhancers Based on Chaos Game Representation and Capsule Network. J Chem Inf Model 2024; 64:5725-5736. [PMID: 38946113 PMCID: PMC11267569 DOI: 10.1021/acs.jcim.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Enhancers are a class of noncoding DNA, serving as crucial regulatory elements in governing gene expression by binding to transcription factors. The identification of enhancers holds paramount importance in the field of biology. However, traditional experimental methods for enhancer identification demand substantial human and material resources. Consequently, there is a growing interest in employing computational methods for enhancer prediction. In this study, we propose a two-stage framework based on deep learning, termed CapsEnhancer, for the identification of enhancers and their strengths. CapsEnhancer utilizes chaos game representation to encode DNA sequences into unique images and employs a capsule network to extract local and global features from sequence "images". Experimental results demonstrate that CapsEnhancer achieves state-of-the-art performance in both stages. In the first and second stages, the accuracy surpasses the previous best methods by 8 and 3.5%, reaching accuracies of 94.5 and 95%, respectively. Notably, this study represents the pioneering application of computer vision methods to enhancer identification tasks. Our work not only contributes novel insights to enhancer identification but also provides a fresh perspective for other biological sequence analysis tasks.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School
of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen 518172, China
| | - Peilin Xie
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahui Guan
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department
of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Yixian Huang
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Division
of Health Medical Intelligence, Human Genome Center, The Institute
of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Huacong Wu
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School
of Medicine, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Kurata H, Harun-Or-Roshid M, Mehedi Hasan M, Tsukiyama S, Maeda K, Manavalan B. MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models. Methods 2024; 227:37-47. [PMID: 38729455 DOI: 10.1016/j.ymeth.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
Collapse
Affiliation(s)
- Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Md Harun-Or-Roshid
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Md Mehedi Hasan
- Division of Biotetecnology and Molecular Medicine, Department of Pathobiological Science, School of Veterinary Medicine, Lousiana State University, Baton Rouge, LA 70803, USA
| | - Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Hu W, Li Y, Wu Y, Guan L, Li M. A deep learning model for DNA enhancer prediction based on nucleotide position aware feature encoding. iScience 2024; 27:110030. [PMID: 38868182 PMCID: PMC11167433 DOI: 10.1016/j.isci.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Enhancers, genomic DNA elements, regulate neighboring gene expression crucial for biological processes like cell differentiation and stress response. However, current machine learning methods for predicting DNA enhancers often underutilize hidden features in gene sequences, limiting model accuracy. Hence, this article proposes the PDCNN model, a deep learning-based enhancer prediction method. PDCNN extracts statistical nucleotide representations from gene sequences, discerning positional distribution information of nucleotides in modifier-like DNA sequences. With a convolutional neural network structure, PDCNN employs dual convolutional and fully connected layers. The cross-entropy loss function iteratively updates using a gradient descent algorithm, enhancing prediction accuracy. Model parameters are fine-tuned to select optimal combinations for training, achieving over 95% accuracy. Comparative analysis with traditional methods and existing models demonstrates PDCNN's robust feature extraction capability. It outperforms advanced machine learning methods in identifying DNA enhancers, presenting an effective method with broad implications for genomics, biology, and medical research.
Collapse
Affiliation(s)
- Wenxing Hu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yelin Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yan Wu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
7
|
Abbasi AF, Asim MN, Ahmed S, Dengel A. Long extrachromosomal circular DNA identification by fusing sequence-derived features of physicochemical properties and nucleotide distribution patterns. Sci Rep 2024; 14:9466. [PMID: 38658614 PMCID: PMC11043385 DOI: 10.1038/s41598-024-57457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| |
Collapse
|
8
|
Zhang Y, Zhang P, Wu H. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers. Brief Bioinform 2024; 25:bbae083. [PMID: 38485768 PMCID: PMC10938904 DOI: 10.1093/bib/bbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
Enhancers, noncoding DNA fragments, play a pivotal role in gene regulation, facilitating gene transcription. Identifying enhancers is crucial for understanding genomic regulatory mechanisms, pinpointing key elements and investigating networks governing gene expression and disease-related mechanisms. Existing enhancer identification methods exhibit limitations, prompting the development of our novel multi-input deep learning framework, termed Enhancer-MDLF. Experimental results illustrate that Enhancer-MDLF outperforms the previous method, Enhancer-IF, across eight distinct human cell lines and exhibits superior performance on generic enhancer datasets and enhancer-promoter datasets, affirming the robustness of Enhancer-MDLF. Additionally, we introduce transfer learning to provide an effective and potential solution to address the prediction challenges posed by enhancer specificity. Furthermore, we utilize model interpretation to identify transcription factor binding site motifs that may be associated with enhancer regions, with important implications for facilitating the study of enhancer regulatory mechanisms. The source code is openly accessible at https://github.com/HaoWuLab-Bioinformatics/Enhancer-MDLF.
Collapse
Affiliation(s)
- Yao Zhang
- School of Software, Shandong University, Jinan, 250100, Shandong, China
| | - Pengyu Zhang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Wu
- School of Software, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
9
|
Mir BA, Rehman MU, Tayara H, Chong KT. Improving Enhancer Identification with a Multi-Classifier Stacked Ensemble Model. J Mol Biol 2023; 435:168314. [PMID: 37852600 DOI: 10.1016/j.jmb.2023.168314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Enhancers are DNA regions that are responsible for controlling the expression of genes. Enhancers are usually found upstream or downstream of a gene, or even inside a gene's intron region, but are normally located at a distant location from the genes they control. By integrating experimental and computational approaches, it is possible to uncover enhancers within DNA sequences, which possess regulatory properties. Experimental techniques such as ChIP-seq and ATAC-seq can identify genomic regions that are associated with transcription factors or accessible to regulatory proteins. On the other hand, computational techniques can predict enhancers based on sequence features and epigenetic modifications. In our study, we have developed a multi-classifier stacked ensemble (MCSE-enhancer) model that can accurately identify enhancers. We utilized feature descriptors from various physiochemical properties as input for our six baseline classifiers and built a stacked classifier, which outperformed previous enhancer classification techniques in terms of accuracy, specificity, sensitivity, and Mathew's correlation coefficient. Our model achieved an accuracy of 81.5%, representing a 2-3% improvement over existing models.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Mobeen Ur Rehman
- Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University, Abu Dhabi 127788, United Arab Emirates.
| | - Hilal Tayara
- School of international Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
10
|
Pham NT, Phan LT, Seo J, Kim Y, Song M, Lee S, Jeon YJ, Manavalan B. Advancing the accuracy of SARS-CoV-2 phosphorylation site detection via meta-learning approach. Brief Bioinform 2023; 25:bbad433. [PMID: 38058187 PMCID: PMC10753650 DOI: 10.1093/bib/bbad433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jimin Seo
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Yeonwoo Kim
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Zou X, Ren L, Cai P, Zhang Y, Ding H, Deng K, Yu X, Lin H, Huang C. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front Med (Lausanne) 2023; 10:1281880. [PMID: 38020152 PMCID: PMC10644030 DOI: 10.3389/fmed.2023.1281880] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA. Methods In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm. Results and discussion The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.
Collapse
Affiliation(s)
- Xidan Zou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Yu
- School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| |
Collapse
|
12
|
Liu Y, Wang Z, Yuan H, Zhu G, Zhang Y. HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction. Brief Bioinform 2023; 24:bbad286. [PMID: 37539835 DOI: 10.1093/bib/bbad286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Enhancers are crucial cis-regulatory elements that control gene expression in a cell-type-specific manner. Despite extensive genetic and computational studies, accurately predicting enhancer activity in different cell types remains a challenge, and the grammar of enhancers is still poorly understood. Here, we present HEAP (high-resolution enhancer activity prediction), an explainable deep learning framework for predicting enhancers and exploring enhancer grammar. The framework includes three modules that use grammar-based reasoning for enhancer prediction. The algorithm can incorporate DNA sequences and epigenetic modifications to obtain better accuracy. We use a novel two-step multi-task learning method, task adaptive parameter sharing (TAPS), to efficiently predict enhancers in different cell types. We first train a shared model with all cell-type datasets. Then we adapt to specific tasks by adding several task-specific subset layers. Experiments demonstrate that HEAP outperforms published methods and showcases the effectiveness of the TAPS, especially for those with limited training samples. Notably, the explainable framework HEAP utilizes post-hoc interpretation to provide insights into the prediction mechanisms from three perspectives: data, model architecture and algorithm, leading to a better understanding of model decisions and enhancer grammar. To the best of our knowledge, HEAP will be a valuable tool for insight into the complex mechanisms of enhancer activity.
Collapse
Affiliation(s)
- Yuhang Liu
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China
| | - Zixuan Wang
- College of Electronics and Information Engieering, Sichuan University, 610065, Chengdu, China
| | - Hao Yuan
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China
| | - Guiquan Zhu
- West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China
| |
Collapse
|
13
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
14
|
Phan LT, Oh C, He T, Manavalan B. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome. Proteomics 2023; 23:e2200409. [PMID: 37021401 DOI: 10.1002/pmic.202200409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.
Collapse
Affiliation(s)
- Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
15
|
Lin Y, Sun M, Zhang J, Li M, Yang K, Wu C, Zulfiqar H, Lai H. Computational identification of promoters in Klebsiella aerogenes by using support vector machine. Front Microbiol 2023; 14:1200678. [PMID: 37250059 PMCID: PMC10215528 DOI: 10.3389/fmicb.2023.1200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Promoters are the basic functional cis-elements to which RNA polymerase binds to initiate the process of gene transcription. Comprehensive understanding gene expression and regulation depends on the precise identification of promoters, as they are the most important component of gene expression. This study aimed to develop a machine learning-based model to predict promoters in Klebsiella aerogenes (K. aerogenes). In the prediction model, the promoter sequences in K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition (PseKNC) and position-correlation scoring function (PCSF). Numerical features were obtained and then optimized using mRMR by combining with support vector machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized features were inputted into SVM-based classifier to discriminate promoter sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV showed that the model could yield the overall accuracy of 96.0% and the area under the ROC curve (AUC) of 0.990. We hope that this model will provide help for the study of promoter and gene regulation in K. aerogenes.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Junjie Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Li
- Chifeng Product Quality Inspection and Testing Centre, Chifeng, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
16
|
Hasan MAM, Maniruzzaman M, Shin J. Differentially expressed discriminative genes and significant meta-hub genes based key genes identification for hepatocellular carcinoma using statistical machine learning. Sci Rep 2023; 13:3771. [PMID: 36882493 PMCID: PMC9992474 DOI: 10.1038/s41598-023-30851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal malignancy of the liver worldwide. Thus, it is important to dig the key genes for uncovering the molecular mechanisms and to improve diagnostic and therapeutic options for HCC. This study aimed to encompass a set of statistical and machine learning computational approaches for identifying the key candidate genes for HCC. Three microarray datasets were used in this work, which were downloaded from the Gene Expression Omnibus Database. At first, normalization and differentially expressed genes (DEGs) identification were performed using limma for each dataset. Then, support vector machine (SVM) was implemented to determine the differentially expressed discriminative genes (DEDGs) from DEGs of each dataset and select overlapping DEDGs genes among identified three sets of DEDGs. Enrichment analysis was performed on common DEDGs using DAVID. A protein-protein interaction (PPI) network was constructed using STRING and the central hub genes were identified depending on the degree, maximum neighborhood component (MNC), maximal clique centrality (MCC), centralities of closeness, and betweenness criteria using CytoHubba. Simultaneously, significant modules were selected using MCODE scores and identified their associated genes from the PPI networks. Moreover, metadata were created by listing all hub genes from previous studies and identified significant meta-hub genes whose occurrence frequency was greater than 3 among previous studies. Finally, six key candidate genes (TOP2A, CDC20, ASPM, PRC1, NUSAP1, and UBE2C) were determined by intersecting shared genes among central hub genes, hub module genes, and significant meta-hub genes. Two independent test datasets (GSE76427 and TCGA-LIHC) were utilized to validate these key candidate genes using the area under the curve. Moreover, the prognostic potential of these six key candidate genes was also evaluated on the TCGA-LIHC cohort using survival analysis.
Collapse
Affiliation(s)
- Md Al Mehedi Hasan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Maniruzzaman
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Statistics Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.
| |
Collapse
|
17
|
Shi H, Wu C, Bai T, Chen J, Li Y, Wu H. Identify essential genes based on clustering based synthetic minority oversampling technique. Comput Biol Med 2023; 153:106523. [PMID: 36652869 DOI: 10.1016/j.compbiomed.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Prediction of essential genes in a life organism is one of the central tasks in synthetic biology. Computational predictors are desired because experimental data is often unavailable. Recently, some sequence-based predictors have been constructed to identify essential genes. However, their predictive performance should be further improved. One key problem is how to effectively extract the sequence-based features, which are able to discriminate the essential genes. Another problem is the imbalanced training set. The amount of essential genes in human cell lines is lower than that of non-essential genes. Therefore, predictors trained with such imbalanced training set tend to identify an unseen sequence as a non-essential gene. Here, a new over-sampling strategy was proposed called Clustering based Synthetic Minority Oversampling Technique (CSMOTE) to overcome the imbalanced data issue. Combining CSMOTE with the Z curve, the global features, and Support Vector Machines, a new protocol called iEsGene-CSMOTE was proposed to identify essential genes. The rigorous jackknife cross validation results indicated that iEsGene-CSMOTE is better than the other competing methods. The proposed method outperformed λ-interval Z curve by 35.48% and 11.25% in terms of Sn and BACC, respectively.
Collapse
Affiliation(s)
- Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Chenjin Wu
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Mathematics & Computer Science, Yanan University, Shanxi, 716000, China.
| | - Jiahai Chen
- Xiamen Sankuai Online Technology Co., Ltd, Xiamen, China.
| | - Yan Li
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
18
|
Nabeel Asim M, Ali Ibrahim M, Fazeel A, Dengel A, Ahmed S. DNA-MP: a generalized DNA modifications predictor for multiple species based on powerful sequence encoding method. Brief Bioinform 2023; 24:6931721. [PMID: 36528802 DOI: 10.1093/bib/bbac546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate prediction of deoxyribonucleic acid (DNA) modifications is essential to explore and discern the process of cell differentiation, gene expression and epigenetic regulation. Several computational approaches have been proposed for particular type-specific DNA modification prediction. Two recent generalized computational predictors are capable of detecting three different types of DNA modifications; however, type-specific and generalized modifications predictors produce limited performance across multiple species mainly due to the use of ineffective sequence encoding methods. The paper in hand presents a generalized computational approach "DNA-MP" that is competent to more precisely predict three different DNA modifications across multiple species. Proposed DNA-MP approach makes use of a powerful encoding method "position specific nucleotides occurrence based 117 on modification and non-modification class densities normalized difference" (POCD-ND) to generate the statistical representations of DNA sequences and a deep forest classifier for modifications prediction. POCD-ND encoder generates statistical representations by extracting position specific distributional information of nucleotides in the DNA sequences. We perform a comprehensive intrinsic and extrinsic evaluation of the proposed encoder and compare its performance with 32 most widely used encoding methods on $17$ benchmark DNA modifications prediction datasets of $12$ different species using $10$ different machine learning classifiers. Overall, with all classifiers, the proposed POCD-ND encoder outperforms existing $32$ different encoders. Furthermore, combinedly over 5-fold cross validation benchmark datasets and independent test sets, proposed DNA-MP predictor outperforms state-of-the-art type-specific and generalized modifications predictors by an average accuracy of 7% across 4mc datasets, 1.35% across 5hmc datasets and 10% for 6ma datasets. To facilitate the scientific community, the DNA-MP web application is available at https://sds_genetic_analysis.opendfki.de/DNA_Modifications/.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Ahtisham Fazeel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| |
Collapse
|
19
|
Li J, Wu Z, Lin W, Luo J, Zhang J, Chen Q, Chen J. iEnhancer-ELM: improve enhancer identification by extracting position-related multiscale contextual information based on enhancer language models. BIOINFORMATICS ADVANCES 2023; 3:vbad043. [PMID: 37113248 PMCID: PMC10125906 DOI: 10.1093/bioadv/vbad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Motivation Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences. Results In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models. iEnhancer-ELM tokenizes DNA sequences with multi-scale k-mers and extracts contextual information of different scale k-mers related with their positions via an multi-head attention mechanism. We first evaluate the performance of different scale k-mers, then ensemble them to improve the performance of enhancer identification. The experimental results on two popular benchmark datasets show that our model outperforms state-of-the-art methods. We further illustrate the interpretability of iEnhancer-ELM. For a case study, we discover 30 enhancer motifs via a 3-mer-based model, where 12 of motifs are verified by STREME and JASPAR, demonstrating our model has a potential ability to unveil the biological mechanism of enhancer. Availability and implementation The models and associated code are available at https://github.com/chen-bioinfo/iEnhancer-ELM. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Wenhao Lin
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | | |
Collapse
|
20
|
Su W, Deng S, Gu Z, Yang K, Ding H, Chen H, Zhang Z. Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition. Front Genet 2023; 14:1157021. [PMID: 36926588 PMCID: PMC10011625 DOI: 10.3389/fgene.2023.1157021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. Methods: In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. Results and Discussion: The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Shuyi Deng
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhifeng Gu
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
21
|
Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework. PLoS Comput Biol 2022; 18:e1010779. [PMID: 36520922 PMCID: PMC9836277 DOI: 10.1371/journal.pcbi.1010779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/12/2023] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enhancers are short non-coding DNA sequences outside of the target promoter regions that can be bound by specific proteins to increase a gene's transcriptional activity, which has a crucial role in the spatiotemporal and quantitative regulation of gene expression. However, enhancers do not have a specific sequence motifs or structures, and their scattered distribution in the genome makes the identification of enhancers from human cell lines particularly challenging. Here we present a novel, stacked multivariate fusion framework called SMFM, which enables a comprehensive identification and analysis of enhancers from regulatory DNA sequences as well as their interpretation. Specifically, to characterize the hierarchical relationships of enhancer sequences, multi-source biological information and dynamic semantic information are fused to represent regulatory DNA enhancer sequences. Then, we implement a deep learning-based sequence network to learn the feature representation of the enhancer sequences comprehensively and to extract the implicit relationships in the dynamic semantic information. Ultimately, an ensemble machine learning classifier is trained based on the refined multi-source features and dynamic implicit relations obtained from the deep learning-based sequence network. Benchmarking experiments demonstrated that SMFM significantly outperforms other existing methods using several evaluation metrics. In addition, an independent test set was used to validate the generalization performance of SMFM by comparing it to other state-of-the-art enhancer identification methods. Moreover, we performed motif analysis based on the contribution scores of different bases of enhancer sequences to the final identification results. Besides, we conducted interpretability analysis of the identified enhancer sequences based on attention weights of EnhancerBERT, a fine-tuned BERT model that provides new insights into exploring the gene semantic information likely to underlie the discovered enhancers in an interpretable manner. Finally, in a human placenta study with 4,562 active distal gene regulatory enhancers, SMFM successfully exposed tissue-related placental development and the differential mechanism, demonstrating the generalizability and stability of our proposed framework.
Collapse
|
22
|
Yuan SS, Gao D, Xie XQ, Ma CY, Su W, Zhang ZY, Zheng Y, Ding H. IBPred: A sequence-based predictor for identifying ion binding protein in phage. Comput Struct Biotechnol J 2022; 20:4942-4951. [PMID: 36147670 PMCID: PMC9474292 DOI: 10.1016/j.csbj.2022.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ion binding proteins (IBPs) can selectively and non-covalently interact with ions. IBPs in phages also play an important role in biological processes. Therefore, accurate identification of IBPs is necessary for understanding their biological functions and molecular mechanisms that involve binding to ions. Since molecular biology experimental methods are still labor-intensive and cost-ineffective in identifying IBPs, it is helpful to develop computational methods to identify IBPs quickly and efficiently. In this work, a random forest (RF)-based model was constructed to quickly identify IBPs. Based on the protein sequence information and residues' physicochemical properties, the dipeptide composition combined with the physicochemical correlation between two residues were proposed for the extraction of features. A feature selection technique called analysis of variance (ANOVA) was used to exclude redundant information. By comparing with other classified methods, we demonstrated that our method could identify IBPs accurately. Based on the model, a Python package named IBPred was built with the source code which can be accessed at https://github.com/ShishiYuan/IBPred.
Collapse
Affiliation(s)
- Shi-Shi Yuan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xue-Qin Xie
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Su
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yan Zheng
- Baotou Medical College, Baotou 014040, China
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
23
|
Identification of key candidate genes for IgA nephropathy using machine learning and statistics based bioinformatics models. Sci Rep 2022; 12:13963. [PMID: 35978028 PMCID: PMC9385868 DOI: 10.1038/s41598-022-18273-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Immunoglobulin-A-nephropathy (IgAN) is a kidney disease caused by the accumulation of IgAN deposits in the kidneys, which causes inflammation and damage to the kidney tissues. Various bioinformatics analysis-based approaches are widely used to predict novel candidate genes and pathways associated with IgAN. However, there is still some scope to clearly explore the molecular mechanisms and causes of IgAN development and progression. Therefore, the present study aimed to identify key candidate genes for IgAN using machine learning (ML) and statistics-based bioinformatics models. First, differentially expressed genes (DEGs) were identified using limma, and then enrichment analysis was performed on DEGs using DAVID. Protein-protein interaction (PPI) was constructed using STRING and Cytoscape was used to determine hub genes based on connectivity and hub modules based on MCODE scores and their associated genes from DEGs. Furthermore, ML-based algorithms, namely support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and partial least square discriminant analysis (PLS-DA) were applied to identify the discriminative genes of IgAN from DEGs. Finally, the key candidate genes (FOS, JUN, EGR1, FOSB, and DUSP1) were identified as overlapping genes among the selected hub genes, hub module genes, and discriminative genes from SVM, LASSO, and PLS-DA, respectively which can be used for the diagnosis and treatment of IgAN.
Collapse
|
24
|
Thi Phan L, Woo Park H, Pitti T, Madhavan T, Jeon YJ, Manavalan B. MLACP 2.0: An updated machine learning tool for anticancer peptide prediction. Comput Struct Biotechnol J 2022; 20:4473-4480. [PMID: 36051870 PMCID: PMC9421197 DOI: 10.1016/j.csbj.2022.07.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
We present a novel meta-approach, MLACP 2.0, and implement it as a user-friendly webserver for the accurate identification of ACPs. MLACP 2.0 employed 11 different encoding schemes and eight different classifiers, including convolutional neural networks, to create a stable meta-model. Benchmarking study has demonstrated that MLACP 2.0 achieves superior performance in ACP prediction compared to publicly available state-of-the-art predictors.
Anticancer peptides are emerging anticancer drug that offers fewer side effects and is more effective than chemotherapy and targeted therapy. Predicting anticancer peptides from sequence information is one of the most challenging tasks in immunoinformatics. In the past ten years, machine learning-based approaches have been proposed for identifying ACP activity from peptide sequences. These methods include our previous method MLACP (developed in 2017) which made a significant impact on anticancer research. MLACP tool has been widely used by the research community, however, its robustness must be improved significantly for its continued practical application. In this study, the first large non-redundant training and independent datasets were constructed for ACP research. Using the training dataset, the study explored a wide range of feature encodings and developed their respective models using seven different conventional classifiers. Subsequently, a subset of encoding-based models was selected for each classifier based on their performance, whose predicted scores were concatenated and trained through a convolutional neural network (CNN), whose corresponding predictor is named MLACP 2.0. The evaluation of MLACP 2.0 with a very diverse independent dataset showed excellent performance and significantly outperformed the recent ACP prediction tools. Additionally, MLACP 2.0 exhibits superior performance during cross-validation and independent assessment when compared to CNN-based embedding models and conventional single models. Consequently, we anticipate that our proposed MLACP 2.0 will facilitate the design of hypothesis-driven experiments by making it easier to discover novel ACPs. The MLACP 2.0 is freely available at https://balalab-skku.org/mlacp2.
Collapse
|
25
|
Zhang W, Hou J, Liu B. iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank. PLoS Comput Biol 2022; 18:e1010404. [PMID: 35969645 PMCID: PMC9410559 DOI: 10.1371/journal.pcbi.1010404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/25/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are regarded as drug targets and biomarkers for the diagnosis and therapy of diseases. However, biological experiments cost substantial time and resources, and the existing computational methods only focus on identifying missing associations between known piRNAs and diseases. With the fast development of biological experiments, more and more piRNAs are detected. Therefore, the identification of piRNA-disease associations of newly detected piRNAs has significant theoretical value and practical significance on pathogenesis of diseases. In this study, the iPiDA-LTR predictor is proposed to identify associations between piRNAs and diseases based on Learning to Rank. The iPiDA-LTR predictor not only identifies the missing associations between known piRNAs and diseases, but also detects diseases associated with newly detected piRNAs. Experimental results demonstrate that iPiDA-LTR effectively predicts piRNA-disease associations outperforming the other related methods.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jialu Hou
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Qiu XY, Wu H, Shao J. TALE-cmap: Protein function prediction based on a TALE-based architecture and the structure information from contact map. Comput Biol Med 2022; 149:105938. [DOI: 10.1016/j.compbiomed.2022.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
|
27
|
Sun Z, Huang Q, Yang Y, Li S, Lv H, Zhang Y, Lin H, Ning L. PSnoD: identifying potential snoRNA-disease associations based on bounded nuclear norm regularization. Brief Bioinform 2022; 23:6640008. [PMID: 35817303 DOI: 10.1093/bib/bbac240] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have proved that small nucleolar RNAs (snoRNAs) play critical roles in the development of various human complex diseases. Discovering the associations between snoRNAs and diseases is an important step toward understanding the pathogenesis and characteristics of diseases. However, uncovering associations via traditional experimental approaches is costly and time-consuming. This study proposed a bounded nuclear norm regularization-based method, called PSnoD, to predict snoRNA-disease associations. Benchmark experiments showed that compared with the state-of-the-art methods, PSnoD achieved a superior performance in the 5-fold stratified shuffle split. PSnoD produced a robust performance with an area under receiver-operating characteristic of 0.90 and an area under precision-recall of 0.55, highlighting the effectiveness of our proposed method. In addition, the computational efficiency of PSnoD was also demonstrated by comparison with other matrix completion techniques. More importantly, the case study further elucidated the ability of PSnoD to screen potential snoRNA-disease associations. The code of PSnoD has been uploaded to https://github.com/linDing-groups/PSnoD. Based on PSnoD, we established a web server that is freely accessed via http://psnod.lin-group.cn/.
Collapse
Affiliation(s)
- Zijie Sun
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Qinlai Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yuhe Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shihao Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
28
|
Fan Y, Peng B. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning. BMC Bioinformatics 2022; 23:272. [PMID: 35820811 PMCID: PMC9277947 DOI: 10.1186/s12859-022-04821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the regulatory role of enhancer–promoter interactions (EPIs) on specific gene expression in cells contributes to the understanding of gene regulation, cell differentiation, etc., and its identification has been a challenging task. On the one hand, using traditional wet experimental methods to identify EPIs often means a lot of human labor and time costs. On the other hand, although the currently proposed computational methods have good recognition effects, they generally require a long training time. Results In this study, we studied the EPIs of six human cell lines and designed a cell line-specific EPIs prediction method based on a stacking ensemble learning strategy, which has better prediction performance and faster training speed, called StackEPI. Specifically, by combining different encoding schemes and machine learning methods, our prediction method can extract the cell line-specific effective information of enhancer and promoter gene sequences comprehensively and in many directions, and make accurate recognition of cell line-specific EPIs. Ultimately, the source code to implement StackEPI and experimental data involved in the experiment are available at https://github.com/20032303092/StackEPI.git. Conclusions The comparison results show that our model can deliver better performance on the problem of identifying cell line-specific EPIs and outperform other state-of-the-art models. In addition, our model also has a more efficient computation speed. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04821-9.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Binchao Peng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
29
|
Jeon YJ, Hasan MM, Park HW, Lee KW, Manavalan B. TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization. Brief Bioinform 2022; 23:6618237. [PMID: 35753698 PMCID: PMC9294414 DOI: 10.1093/bib/bbac243] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are primarily regulated by their cellular localization, which is responsible for their molecular functions, including cell cycle regulation and genome rearrangements. Accurately identifying the subcellular location of lncRNAs from sequence information is crucial for a better understanding of their biological functions and mechanisms. In contrast to traditional experimental methods, bioinformatics or computational methods can be applied for the annotation of lncRNA subcellular locations in humans more effectively. In the past, several machine learning-based methods have been developed to identify lncRNA subcellular localization, but relevant work for identifying cell-specific localization of human lncRNA remains limited. In this study, we present the first application of the tree-based stacking approach, TACOS, which allows users to identify the subcellular localization of human lncRNA in 10 different cell types. Specifically, we conducted comprehensive evaluations of six tree-based classifiers with 10 different feature descriptors, using a newly constructed balanced training dataset for each cell type. Subsequently, the strengths of the AdaBoost baseline models were integrated via a stacking approach, with an appropriate tree-based classifier for the final prediction. TACOS displayed consistent performance in both the cross-validation and independent assessments compared with the other two approaches employed in this study. The user-friendly online TACOS web server can be accessed at https://balalab-skku.org/TACOS.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hyun Woo Park
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics laboratory, Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
30
|
Hosen MF, Mahmud SH, Ahmed K, Chen W, Moni MA, Deng HW, Shoombuatong W, Hasan MM. DeepDNAbP: A deep learning-based hybrid approach to improve the identification of deoxyribonucleic acid-binding proteins. Comput Biol Med 2022; 145:105433. [DOI: 10.1016/j.compbiomed.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
|
31
|
Wu H, Liang Q, Zhang W, Zou Q, El-Latif Hesham A, Liu B. iLncDA-LTR: Identification of lncRNA-disease associations by learning to rank. Comput Biol Med 2022; 146:105605. [PMID: 35594681 DOI: 10.1016/j.compbiomed.2022.105605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Identifying the associations between lncRNAs and diseases is helpful for the treatment and diagnosis of complex diseases. The existing computational methods mainly focus on the identification of associations between known lncRNAs and known diseases. However, with the application of high-throughput sequencing in lncRNA research, more and more lncRNAs have been detected. Predicting diseases related with newly detected lncRNAs has not been fully explored. Therefore, there is an urgent need for developing powerful computational methods to predict diseases related with newly detected lncRNAs. In this paper, we propose a Learning to Rank (LTR)-based method called iLncDA-LTR to predict diseases related with newly detected lncRNAs. iLncDA-LTR treats this task as an information retrieval task. The newly detected lncRNAs and diseases are considered as queries and documents, respectively. For a given newly detected lncRNA (query), iLncDA-LTR integrates multiple relevant information into LTR for predicting candidate diseases associated with query lncRNA. Experimental results show that iLncDA-LTR outperforms the other exiting state-of-the-art predictors on independent dataset. The corresponding web server of iLncDA-LTR has been constructed as well (http://bliulab.net/iLncDA-LTR/).
Collapse
Affiliation(s)
- Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Qi Liang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
32
|
Lv H, Yan K, Guo Y, Zou Q, Hesham AEL, Liu B. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Comput Biol Med 2022; 146:105577. [PMID: 35576825 DOI: 10.1016/j.compbiomed.2022.105577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Antimicrobial peptides (AMPs) are important for the human immune system and are currently applied in clinical trials. AMPs have been received much attention for accurate recognition. Recently, several computational methods for identifying AMPs have been proposed. However, existing methods have difficulty in accurately predicting AMPs. In this paper, we propose a novel AMP prediction method called AMPpred-EL based on an ensemble learning strategy. AMPred-EL is constructed based on ensemble learning combined with LightGBM and logistic regression. Experimental results demonstrate that AMPpred-EL outperforms several state-of-the-art methods on the benchmark datasets and then improves the efficiency performance.
Collapse
Affiliation(s)
- Hongwu Lv
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yichen Guo
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
33
|
Shoombuatong W, Basith S, Pitti T, Lee G, Manavalan B. THRONE: a new approach for accurate prediction of human RNA N7-methylguanosine sites. J Mol Biol 2022; 434:167549. [DOI: 10.1016/j.jmb.2022.167549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
|
34
|
Kabir M, Nantasenamat C, Kanthawong S, Charoenkwan P, Shoombuatong W. Large-scale comparative review and assessment of computational methods for phage virion proteins identification. EXCLI JOURNAL 2022; 21:11-29. [PMID: 35145365 PMCID: PMC8822302 DOI: 10.17179/excli2021-4411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.
Collapse
Affiliation(s)
- Muhammad Kabir
- School of Systems and Technology, Department of Computer Science, University of Management and Technology, Lahore, Pakistan, 54770
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, 40002
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| |
Collapse
|
35
|
Liu M, Chen H, Gao D, Ma CY, Zhang ZY. Identification of Helicobacter pylori Membrane Proteins Using Sequence-Based Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7493834. [PMID: 35069791 PMCID: PMC8769816 DOI: 10.1155/2022/7493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori (H. pylori) is the most common risk factor for gastric cancer worldwide. The membrane proteins of the H. pylori are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-effective computational model is needed to predict the uncharacterized membrane proteins of H. pylori. In this study, a reliable benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support vector machine- (SVM-) based model was developed for discriminating H. pylori membrane proteins from nonmembrane proteins by using sequence information. Cross-validation showed that our method achieved good performance with an accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of H. pylori membrane proteins and the development of new anti-H. pylori agents.
Collapse
Affiliation(s)
- Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Chengdu University of TCM, Chengdu 610084, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
36
|
Wang H, Joshi P, Hong SH, Maye PF, Rowe DW, Shin DG. Predicting the targets of IRF8 and NFATc1 during osteoclast differentiation using the machine learning method framework cTAP. BMC Genomics 2022; 23:14. [PMID: 34991467 PMCID: PMC8740472 DOI: 10.1186/s12864-021-08159-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Interferon regulatory factor-8 (IRF8) and nuclear factor-activated T cells c1 (NFATc1) are two transcription factors that have an important role in osteoclast differentiation. Thanks to ChIP-seq technology, scientists can now estimate potential genome-wide target genes of IRF8 and NFATc1. However, finding target genes that are consistently up-regulated or down-regulated across different studies is hard because it requires analysis of a large number of high-throughput expression studies from a comparable context. METHOD We have developed a machine learning based method, called, Cohort-based TF target prediction system (cTAP) to overcome this problem. This method assumes that the pathway involving the transcription factors of interest is featured with multiple "functional groups" of marker genes pertaining to the concerned biological process. It uses two notions, Gene-Present Sufficiently (GP) and Gene-Absent Insufficiently (GA), in addition to log2 fold changes of differentially expressed genes for the prediction. Target prediction is made by applying multiple machine-learning models, which learn the patterns of GP and GA from log2 fold changes and four types of Z scores from the normalized cohort's gene expression data. The learned patterns are then associated with the putative transcription factor targets to identify genes that consistently exhibit Up/Down gene regulation patterns within the cohort. We applied this method to 11 publicly available GEO data sets related to osteoclastgenesis. RESULT Our experiment identified a small number of Up/Down IRF8 and NFATc1 target genes as relevant to osteoclast differentiation. The machine learning models using GP and GA produced NFATc1 and IRF8 target genes different than simply using a log2 fold change alone. Our literature survey revealed that all predicted target genes have known roles in bone remodeling, specifically related to the immune system and osteoclast formation and functions, suggesting confidence and validity in our method. CONCLUSION cTAP was motivated by recognizing that biologists tend to use Z score values present in data sets for the analysis. However, using cTAP effectively presupposes assembling a sizable cohort of gene expression data sets within a comparable context. As public gene expression data repositories grow, the need to use cohort-based analysis method like cTAP will become increasingly important.
Collapse
Affiliation(s)
- Honglin Wang
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Peter F. Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| |
Collapse
|
37
|
Liang Y, Zhang S, Qiao H, Cheng Y. iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8797-8814. [PMID: 34814323 DOI: 10.3934/mbe.2021434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancer is a non-coding DNA fragment that can be bound with proteins to activate transcription of a gene, hence play an important role in regulating gene expression. Enhancer identification is very challenging and more complicated than other genetic factors due to their position variation and free scattering. In addition, it has been proved that genetic variation in enhancers is related to human diseases. Therefore, identification of enhancers and their strength has important biological meaning. In this paper, a novel model named iEnhancer-MFGBDT is developed to identify enhancer and their strength by fusing multiple features and gradient boosting decision tree (GBDT). Multiple features include k-mer and reverse complement k-mer nucleotide composition based on DNA sequence, and second-order moving average, normalized Moreau-Broto auto-cross correlation and Moran auto-cross correlation based on dinucleotide physical structural property matrix. Then we use GBDT to select features and perform classification successively. The accuracies reach 78.67% and 66.04% for identifying enhancers and their strength on the benchmark dataset, respectively. Compared with other models, the results show that our model is useful and effective intelligent tool to identify enhancers and their strength, of which the datasets and source codes are available at https://github.com/shengli0201/iEnhancer-MFGBDT1.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Huijuan Qiao
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Yinan Cheng
- Department of Statistics, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Prediction of Protein Solubility Based on Sequence Feature Fusion and DDcCNN. Interdiscip Sci 2021; 13:703-716. [PMID: 34236625 DOI: 10.1007/s12539-021-00456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prediction of protein solubility is an indispensable prerequisite for pharmaceutical research and production. The general and specific objective of this work is to design a new model for predicting protein solubility by using protein sequence feature fusion and deep dual-channel convolutional neural networks (DDcCNN) to improve the performance of existing prediction models. METHODS The redundancy of raw protein is reduced by CD-HIT. The four subsequences are built from protein sequence: one global and three locals. The global subsequence is the entire protein sequence, and these local subsequences are obtained by moving a sliding window with some rules. Using G-gap to extract the features of the above four subsequences, a mixed matrix is constructed as the input of one channel which is composed of three-layer convolutional operating. Additional features are extracted by SCRATCH tool as input of another channel, which is consist of a single convolution in order to find hidden relationships and improve the accuracy of predictor. The outputs of two parallel channels are concatenated as the input of the hidden layer. And the prediction of protein solubility is obtained in the output layer. The best protein solubility prediction model is obtained by doing some comparative experiments of different frameworks. RESULTS The performance indicators of DDcCNN model (our designed) are as follows: accuracy of 77.82%, Matthew's correlation coefficient of 0.57, sensitivity of 76.13% and specificity of 79.32%. The results of some comparative experiments show that the overall performance of DDcCNN model is better than existing models (GCNN, LCNN and PCNN). The related models and data are publicly deposited at http://www.ddccnn.wang . CONCLUSION The satisfactory performance of DDcCNN model reveals that these features and flexible computational methodologies can reinforce the existing prediction models for better prediction of protein solubility could be applied in several applications, such as to preselect initial targets that are soluble or to alter solubility of target proteins, thus can help to reduce the production cost.
Collapse
|