1
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
2
|
Wang G, Feng H, Cao C. BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation. J Comput Biol 2024. [PMID: 39049806 DOI: 10.1089/cmb.2024.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Research on drug-drug interaction (DDI) prediction, particularly in identifying DDI event types, is crucial for understanding adverse drug reactions and drug combinations. This work introduces a Bidirectional Recurrent Neural Network model for DDI event type prediction (BiRNN-DDI), which simultaneously considers structural relationships and contextual information. Our BiRNN-DDI model constructs drug feature graphs to mine structural relationships. For contextual information, it transforms drug graphs into sequences and employs a two-channel structure, integrating BiRNN, to obtain contextual representations of drug-drug pairs. The model's effectiveness is demonstrated through comparisons with state-of-the-art models on two DDI event-type benchmarks. Extensive experimental results reveal that BiRNN-DDI surpasses other models in accuracy, AUPR, AUC, F1 score, Precision, and Recall metrics on both small and large datasets. Additionally, our model exhibits a lower parameter space, indicating more efficient learning of drug feature representations and prediction of potential DDI event types.
Collapse
Affiliation(s)
- GuiShen Wang
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Hui Feng
- School of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Hauben M, Rafi M, Abdelaziz I, Hassanzadeh O. Knowledge Graphs in Pharmacovigilance: A Scoping Review. Clin Ther 2024; 46:544-554. [PMID: 38981792 DOI: 10.1016/j.clinthera.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE To critically assess the role and added value of knowledge graphs in pharmacovigilance, focusing on their ability to predict adverse drug reactions. METHODS A systematic scoping review was conducted in which detailed information, including objectives, technology, data sources, methodology, and performance metrics, were extracted from a set of peer-reviewed publications reporting the use of knowledge graphs to support pharmacovigilance signal detection. FINDINGS The review, which included 47 peer-reviewed articles, found knowledge graphs were utilized for detecting/predicting single-drug adverse reactions and drug-drug interactions, with variable reported performance and sparse comparisons to legacy methods. IMPLICATIONS Research to date suggests that knowledge graphs have the potential to augment predictive signal detection in pharmacovigilance, but further research using more reliable reference sets of adverse drug reactions and comparison with legacy pharmacovigilance methods are needed to more clearly define best practices and to establish their place in holistic pharmacovigilance systems.
Collapse
Affiliation(s)
- Manfred Hauben
- Department of Family and Community Medicine, New York Medical College, Valhalla, New York; Truliant Consulting, Baltimore, Maryland
| | - Mazin Rafi
- Department of Statistics, Rutgers University, Piscataway, New Jersey.
| | | | | |
Collapse
|
4
|
Hou LX, Yi HC, You ZH, Chen SH, Zheng J, Kwoh CK. MathEagle: Accurate prediction of drug-drug interaction events via multi-head attention and heterogeneous attribute graph learning. Comput Biol Med 2024; 177:108642. [PMID: 38820777 DOI: 10.1016/j.compbiomed.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Drug-drug interaction events influence the effectiveness of drug combinations and can lead to unexpected side effects or exacerbate underlying diseases, jeopardizing patient prognosis. Most existing methods are restricted to predicting whether two drugs interact or the type of drug-drug interactions, while very few studies endeavor to predict the specific risk levels of side effects of drug combinations. METHODS In this study, we propose MathEagle, a novel approach to predict accurate risk levels of drug combinations based on multi-head attention and heterogeneous attribute graph learning. Initially, we model drugs and three distinct risk levels between drugs as a heterogeneous information graph. Subsequently, behavioral and chemical structure features of drugs are utilized by message passing neural networks and graph embedding algorithms, respectively. Ultimately, MathEagle employs heterogeneous graph convolution and multi-head attention mechanisms to learn efficient latent representations of drug nodes and estimates the risk levels of pairwise drugs in an end-to-end manner. RESULTS To assess the effectiveness and robustness of the model, five-fold cross-validation, ablation experiments, and case studies were conducted. MathEagle achieved an accuracy of 85.85 % and an AUC of 0.9701 on the drug risk level prediction task and is superior to all comparative models. The MathEagle predictor is freely accessible at http://120.77.11.78/MathEagle/. CONCLUSIONS The experimental results indicate that MathEagle can function as an effective tool for predicting accurate risk of drug combinations, aiding in guiding clinical medication, and enhancing patient outcomes.
Collapse
Affiliation(s)
- Lin-Xuan Hou
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710129, China
| | - Hai-Cheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710129, China.
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Shi-Hong Chen
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jia Zheng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| |
Collapse
|
5
|
Fang F, Sun Y. Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network. Comput Biol Med 2024; 175:108371. [PMID: 38691916 DOI: 10.1016/j.compbiomed.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies.
Collapse
Affiliation(s)
- Fang Fang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yizhou Sun
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Wang Y, Yang Z, Yao Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning. COMMUNICATIONS MEDICINE 2024; 4:59. [PMID: 38548835 PMCID: PMC10978847 DOI: 10.1038/s43856-024-00486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Discovering potential drug-drug interactions (DDIs) is a long-standing challenge in clinical treatments and drug developments. Recently, deep learning techniques have been developed for DDI prediction. However, they generally require a huge number of samples, while known DDIs are rare. METHODS In this work, we present KnowDDI, a graph neural network-based method that addresses the above challenge. KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs. Then, it learns a knowledge subgraph for each drug-pair to interpret the predicted DDI, where each of the edges is associated with a connection strength indicating the importance of a known DDI or resembling strength between a drug-pair whose connection is unknown. Thus, the lack of DDIs is implicitly compensated by the enriched drug representations and propagated drug similarities. RESULTS Here we show the evaluation results of KnowDDI on two benchmark DDI datasets. Results show that KnowDDI obtains the state-of-the-art prediction performance with better interpretability. We also find that KnowDDI suffers less than existing works given a sparser knowledge graph. This indicates that the propagated drug similarities play a more important role in compensating for the lack of DDIs when the drug representations are less enriched. CONCLUSIONS KnowDDI nicely combines the efficiency of deep learning techniques and the rich prior knowledge in biomedical knowledge graphs. As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks, such as protein-protein interactions, drug-target interactions and disease-gene interactions, eventually promoting the development of biomedicine and healthcare.
Collapse
Affiliation(s)
| | - Zaifei Yang
- Baidu Research, Baidu Inc., Beijing, China
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Quanming Yao
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Luo H, Yin W, Wang J, Zhang G, Liang W, Luo J, Yan C. Drug-drug interactions prediction based on deep learning and knowledge graph: A review. iScience 2024; 27:109148. [PMID: 38405609 PMCID: PMC10884936 DOI: 10.1016/j.isci.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Weijie Yin
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| |
Collapse
|
9
|
Chen S, Semenov I, Zhang F, Yang Y, Geng J, Feng X, Meng Q, Lei K. An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network. Comput Biol Med 2024; 169:107900. [PMID: 38199213 DOI: 10.1016/j.compbiomed.2023.107900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Drug-drug interactions (DDIs) play a central role in drug research, as the simultaneous administration of multiple drugs can have harmful or beneficial effects. Harmful interactions lead to adverse reactions, some of which can be life-threatening, while beneficial interactions can promote efficacy. Therefore, it is crucial for physicians, patients, and the research community to identify potential DDIs. Although many AI-based techniques have been proposed for predicting DDIs, most existing computational models primarily focus on integrating multiple data sources or combining popular embedding methods. Researchers often overlook the valuable information within the molecular structure of drugs or only consider the structural information of drugs, neglecting the relationship or topological information between drugs and other biological objects. In this study, we propose MSKG-DDI - a two-component framework that incorporates the Drug Chemical Structure Graph-based component and the Drug Knowledge Graph-based component to capture multimodal characteristics of drugs. Subsequently, a multimodal fusion neural layer is utilized to explore the complementarity between multimodal representations of drugs. Extensive experiments were conducted using two real-world datasets, and the results demonstrate that MSKG-DDI outperforms other state-of-the-art models in binary-class, multi-class, and multi-label prediction tasks under both transductive and inductive settings. Furthermore, the ablation analysis further confirms the practical usefulness of MSKG-DDI.
Collapse
Affiliation(s)
- Siqi Chen
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ivan Semenov
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Fengyun Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Jie Geng
- TianJin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Xuequan Feng
- Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Qinghua Meng
- Tianjin Key Laboratory of Sports Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Kaiyou Lei
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Kpanou R, Dallaire P, Rousseau E, Corbeil J. Learning self-supervised molecular representations for drug-drug interaction prediction. BMC Bioinformatics 2024; 25:47. [PMID: 38291362 PMCID: PMC10829170 DOI: 10.1186/s12859-024-05643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Drug-drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chemical spaces, primarily due to the scarcity of high-quality labeled DDI data. Inspired by recent advances in computer vision, we present SMR-DDI, a self-supervised framework that leverages contrastive learning to embed drugs into a scaffold-based feature space. Molecular scaffolds represent the core structural motifs that drive pharmacological activities, making them valuable for learning informative representations. Specifically, we pre-trained SMR-DDI on a large-scale unlabeled molecular dataset. We generated augmented views for each molecule via SMILES enumeration and optimized the embedding process through contrastive loss minimization between views. This enables the model to capture relevant and robust molecular features while reducing noise. We then transfer the learned representations for the downstream prediction of DDI. Experiments show that the new feature space has comparable expressivity to state-of-the-art molecular representations and achieved competitive DDI prediction results while training on less data. Additional investigations also revealed that pre-training on more extensive and diverse unlabeled molecular datasets improved the model's capability to embed molecules more effectively. Our results highlight contrastive learning as a promising approach for DDI prediction that can identify potentially hazardous drug combinations using only structural information.
Collapse
Affiliation(s)
- Rogia Kpanou
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada.
| | - Patrick Dallaire
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada
| | - Elsa Rousseau
- Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, QC, Canada
| | - Jacques Corbeil
- Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada.
- Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
11
|
Hu L, Zhang M, Hu P, Zhang J, Niu C, Lu X, Jiang X, Ma Y. Dual-channel hypergraph convolutional network for predicting herb-disease associations. Brief Bioinform 2024; 25:bbae067. [PMID: 38426326 PMCID: PMC10939431 DOI: 10.1093/bib/bbae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.
Collapse
Affiliation(s)
- Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Menglong Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Jun Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Chao Niu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physicsand Chemistry,Chinese Academy of Sciences Urumqi, China
| | - Xueying Lu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physicsand Chemistry,Chinese Academy of Sciences Urumqi, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,Chinese Academy of Sciences Shanghai, China
| | - Yupeng Ma
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| |
Collapse
|
12
|
Alvarez-Mamani E, Dechant R, Beltran-Castañón CA, Ibáñez AJ. Graph embedding on mass spectrometry- and sequencing-based biomedical data. BMC Bioinformatics 2024; 25:1. [PMID: 38166530 PMCID: PMC10763173 DOI: 10.1186/s12859-023-05612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Graph embedding techniques are using deep learning algorithms in data analysis to solve problems of such as node classification, link prediction, community detection, and visualization. Although typically used in the context of guessing friendships in social media, several applications for graph embedding techniques in biomedical data analysis have emerged. While these approaches remain computationally demanding, several developments over the last years facilitate their application to study biomedical data and thus may help advance biological discoveries. Therefore, in this review, we discuss the principles of graph embedding techniques and explore the usefulness for understanding biological network data derived from mass spectrometry and sequencing experiments, the current workhorses of systems biology studies. In particular, we focus on recent examples for characterizing protein-protein interaction networks and predicting novel drug functions.
Collapse
Affiliation(s)
- Edwin Alvarez-Mamani
- Engineering Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Reinhard Dechant
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
- Calico Life Sciences, 1170 Veterans Blvd, San Francisco, CA, 94080, USA
| | | | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru.
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru.
| |
Collapse
|
13
|
Djeddi WE, Hermi K, Ben Yahia S, Diallo G. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining. BMC Bioinformatics 2023; 24:488. [PMID: 38114937 PMCID: PMC10731821 DOI: 10.1186/s12859-023-05593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The pharmaceutical field faces a significant challenge in validating drug target interactions (DTIs) due to the time and cost involved, leading to only a fraction being experimentally verified. To expedite drug discovery, accurate computational methods are essential for predicting potential interactions. Recently, machine learning techniques, particularly graph-based methods, have gained prominence. These methods utilize networks of drugs and targets, employing knowledge graph embedding (KGE) to represent structured information from knowledge graphs in a continuous vector space. This phenomenon highlights the growing inclination to utilize graph topologies as a means to improve the precision of predicting DTIs, hence addressing the pressing requirement for effective computational methodologies in the field of drug discovery. RESULTS The present study presents a novel approach called DTIOG for the prediction of DTIs. The methodology employed in this study involves the utilization of a KGE strategy, together with the incorporation of contextual information obtained from protein sequences. More specifically, the study makes use of Protein Bidirectional Encoder Representations from Transformers (ProtBERT) for this purpose. DTIOG utilizes a two-step process to compute embedding vectors using KGE techniques. Additionally, it employs ProtBERT to determine target-target similarity. Different similarity measures, such as Cosine similarity or Euclidean distance, are utilized in the prediction procedure. In addition to the contextual embedding, the proposed unique approach incorporates local representations obtained from the Simplified Molecular Input Line Entry Specification (SMILES) of drugs and the amino acid sequences of protein targets. CONCLUSIONS The effectiveness of the proposed approach was assessed through extensive experimentation on datasets pertaining to Enzymes, Ion Channels, and G-protein-coupled Receptors. The remarkable efficacy of DTIOG was showcased through the utilization of diverse similarity measures in order to calculate the similarities between drugs and targets. The combination of these factors, along with the incorporation of various classifiers, enabled the model to outperform existing algorithms in its ability to predict DTIs. The consistent observation of this advantage across all datasets underlines the robustness and accuracy of DTIOG in the domain of DTIs. Additionally, our case study suggests that the DTIOG can serve as a valuable tool for discovering new DTIs.
Collapse
Affiliation(s)
- Warith Eddine Djeddi
- LR11ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire, 2092, Tunis, Tunisia.
- High Institute of Informatics in Kef, University of Jendouba, Saleh Ayech, 8189, Jendouba, Tunisia.
| | - Khalil Hermi
- High Institute of Informatics in Kef, University of Jendouba, Saleh Ayech, 8189, Jendouba, Tunisia
| | - Sadok Ben Yahia
- Department of Software Science, Tallinn University of Technology, Ehitajate tee-5, 12618, Tallinn, Estonia
- The Maersk Mc-Kinney Moller Institute, Southern Syddansk Universitet, Alsion 2, 6400, Sønderborg, Denmark
| | - Gayo Diallo
- Bordeaux Population Health Inserm 1219, University of Bordeaux, rue Léo Saignat, 33000, Bordeaux, France
| |
Collapse
|
14
|
Daza D, Alivanistos D, Mitra P, Pijnenburg T, Cochez M, Groth P. BioBLP: a modular framework for learning on multimodal biomedical knowledge graphs. J Biomed Semantics 2023; 14:20. [PMID: 38066573 PMCID: PMC10709903 DOI: 10.1186/s13326-023-00301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Knowledge graphs (KGs) are an important tool for representing complex relationships between entities in the biomedical domain. Several methods have been proposed for learning embeddings that can be used to predict new links in such graphs. Some methods ignore valuable attribute data associated with entities in biomedical KGs, such as protein sequences, or molecular graphs. Other works incorporate such data, but assume that entities can be represented with the same data modality. This is not always the case for biomedical KGs, where entities exhibit heterogeneous modalities that are central to their representation in the subject domain. OBJECTIVE We aim to understand how to incorporate multimodal data into biomedical KG embeddings, and analyze the resulting performance in comparison with traditional methods. We propose a modular framework for learning embeddings in KGs with entity attributes, that allows encoding attribute data of different modalities while also supporting entities with missing attributes. We additionally propose an efficient pretraining strategy for reducing the required training runtime. We train models using a biomedical KG containing approximately 2 million triples, and evaluate the performance of the resulting entity embeddings on the tasks of link prediction, and drug-protein interaction prediction, comparing against methods that do not take attribute data into account. RESULTS In the standard link prediction evaluation, the proposed method results in competitive, yet lower performance than baselines that do not use attribute data. When evaluated in the task of drug-protein interaction prediction, the method compares favorably with the baselines. Further analyses show that incorporating attribute data does outperform baselines over entities below a certain node degree, comprising approximately 75% of the diseases in the graph. We also observe that optimizing attribute encoders is a challenging task that increases optimization costs. Our proposed pretraining strategy yields significantly higher performance while reducing the required training runtime. CONCLUSION BioBLP allows to investigate different ways of incorporating multimodal biomedical data for learning representations in KGs. With a particular implementation, we find that incorporating attribute data does not consistently outperform baselines, but improvements are obtained on a comparatively large subset of entities below a specific node-degree. Our results indicate a potential for improved performance in scientific discovery tasks where understudied areas of the KG would benefit from link prediction methods.
Collapse
Affiliation(s)
- Daniel Daza
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- University of Amsterdam, Amsterdam, The Netherlands.
- Discovery Lab, Elsevier, Amsterdam, The Netherlands.
| | - Dimitrios Alivanistos
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Discovery Lab, Elsevier, Amsterdam, The Netherlands.
| | | | | | - Michael Cochez
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Discovery Lab, Elsevier, Amsterdam, The Netherlands
| | - Paul Groth
- University of Amsterdam, Amsterdam, The Netherlands
- Discovery Lab, Elsevier, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Huang L, Chen Q, Lan W. Predicting drug-drug interactions based on multi-view and multichannel attention deep learning. Health Inf Sci Syst 2023; 11:50. [PMID: 37941825 PMCID: PMC10628064 DOI: 10.1007/s13755-023-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Predicting drug-drug interactions (DDIs) has become a major concern in the drug research field because it helps explore the pharmacological function of drugs and enables the development of new therapeutic drugs. Existing prediction methods simply integrate multiple drug attributes or perform tasks on a biomedical knowledge graph (KG). Though effective, few methods can fully utilize multi-source drug data information. In this paper, a multi-view and multichannel attention deep learning (MMADL) model is proposed, which not only extracts rich drug features containing both drug attributes and drug-related entity information from multi-source databases, but also considers the consistency and complementarity of different drug feature representation learning approaches to improve the effectiveness and accuracy of DDI prediction. A single-layer perceptron encoder is applied to encode multi-source drug information to obtain multi-view drug representation vectors in the same linear space. Then, the multichannel attention mechanism is introduced to obtain the attention weight by adaptively learning the importance of drug features according to their contributions to DDI prediction. Further, the representation vectors of multi-view drug pairs with attention weights are used as inputs of the deep neural network to predict potential DDI. The accuracy and precision-recall curves of MMADL are 93.05 and 95.94, respectively. The results indicate that the proposed method outperforms other state-of-the-art methods.
Collapse
Affiliation(s)
- Liyu Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Qingfeng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004 China
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, 3086 Australia
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004 China
| |
Collapse
|
16
|
Zhao BW, Su XR, Yang Y, Li DX, Li GD, Hu PW, Zhao YG, Hu L. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks. Methods 2023; 220:106-114. [PMID: 37972913 DOI: 10.1016/j.ymeth.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Discovering new indications for existing drugs is a promising development strategy at various stages of drug research and development. However, most of them complete their tasks by constructing a variety of heterogeneous networks without considering available higher-order connectivity patterns in heterogeneous biological information networks, which are believed to be useful for improving the accuracy of new drug discovering. To this end, we propose a computational-based model, called SFRLDDA, for drug-disease association prediction by using semantic graph and function similarity representation learning. Specifically, SFRLDDA first integrates a heterogeneous information network (HIN) by drug-disease, drug-protein, protein-disease associations, and their biological knowledge. Second, different representation learning strategies are applied to obtain the feature representations of drugs and diseases from different perspectives over semantic graph and function similarity graphs constructed, respectively. At last, a Random Forest classifier is incorporated by SFRLDDA to discover potential drug-disease associations (DDAs). Experimental results demonstrate that SFRLDDA yields a best performance when compared with other state-of-the-art models on three benchmark datasets. Moreover, case studies also indicate that the simultaneous consideration of semantic graph and function similarity of drugs and diseases in the HIN allows SFRLDDA to precisely predict DDAs in a more comprehensive manner.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yue Yang
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Dong-Xu Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yong-Gang Zhao
- Department of Orthopaedic Surgery (hand and foot trauma), People's Hospital of Dongxihu, Wuhan 420100, China.
| | - Lun Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| |
Collapse
|
17
|
Lin S, Mao X, Hong L, Lin S, Wei DQ, Xiong Y. MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms. Methods 2023; 220:1-10. [PMID: 37858611 DOI: 10.1016/j.ymeth.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
Collapse
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, China; Peng Cheng National Laboratory, Shenzhen 518055, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
18
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
19
|
Zhou Q, Zhang Y, Wang S, Wu D. Drug-drug interaction prediction based on local substructure features and their complements. J Mol Graph Model 2023; 124:108557. [PMID: 37390789 DOI: 10.1016/j.jmgm.2023.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
The properties of drugs may undergo changes when multiple drugs are co-administered to treat co-existing or complex diseases, potentially leading to unforeseen drug-drug interactions (DDIs). Therefore, predicting potential drug-drug interactions has been an important task in pharmaceutical research. However, the following challenges remain: (1) existing methods do not work very well in cold-start scenarios, and (2) the interpretability of existing methods is not satisfactory. To address these challenges, we proposed a multi-channel feature fusion method based on local substructure features of drugs and their complements (LSFC). The local substructure features are extracted from each drug, interacted with those of another drug, and then integrated with the global features of two drugs for DDI prediction. We evaluated LSFC on two real-world DDI datasets in worm-start and cold-start scenarios. Comprehensive experiments demonstrate that LSFC consistently improved DDI prediction performance compared with the start-of-the-art methods. Moreover, visual inspection results showed that LSFC can detect crucial substructures of drugs for DDIs, providing interpretable DDI prediction. The source codes and data are available at https://github.com/Zhang-Yang-ops/LSFC.
Collapse
Affiliation(s)
- Qing Zhou
- College of Computer Science, Chongqing University, Chongqing 400044, China.
| | - Yang Zhang
- College of Computer Science, Chongqing University, Chongqing 400044, China.
| | - Siyuan Wang
- College of Computer Science, Chongqing University, Chongqing 400044, China.
| | - Dayu Wu
- College of Computer Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
20
|
林 工, 滕 飞, 胡 巧, 金 朝, 徐 珽, Haibo Z. [Knowledge Graph-Based Prediction of Potentially Inappropriate Medication]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:884-891. [PMID: 37866942 PMCID: PMC10579076 DOI: 10.12182/20230960108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 10/24/2023]
Abstract
Objective To improve the accuracy of potentially inappropriate medication (PIM) prediction, a PIM prediction model that combines knowledge graph and machine learning was proposed. Methods Firstly, based on Beers criteria 2019 and using the knowledge graph as the basic structure, a PIM knowledge representation framework with logical expression capabilities was constructed, and a PIM inference process was implemented from patient information nodes to PIM nodes. Secondly, a machine learning prediction model for each PIM label was established based on the classifier chain algorithm, to learn the potential feature associations from the data. Finally, based on a threshold of sample size, a portion of reasoning results from the knowledge graph was used as output labels on the classifier chain to enhance the reliability of the prediction results of low-frequency PIMs. Results 11 741 prescriptions from 9 medical institutions in Chengdu were used to evaluate the effectiveness of the model. Experimental results show that the accuracy of the model for PIM quantity prediction is 98.10%, the F1 is 93.66%, the Hamming loss for PIM multi-label prediction is 0.06%, and the macroF1 is 66.09%, which has higher prediction accuracy than the existing models. Conclusion The method proposed has better prediction performance for potentially inappropriate medication and significantly improves the recognition of low-frequency PIM labels.
Collapse
Affiliation(s)
- 工钞 林
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| | - 飞 滕
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| | - 巧织 胡
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| | - 朝辉 金
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| | - 珽 徐
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhang Haibo
- 西南交通大学计算机与人工智能学院 (成都 611756)School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
21
|
Lin X, Dai L, Zhou Y, Yu ZG, Zhang W, Shi JY, Cao DS, Zeng L, Chen H, Song B, Yu PS, Zeng X. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Brief Bioinform 2023:bbad235. [PMID: 37401373 DOI: 10.1093/bib/bbad235] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
Collapse
Affiliation(s)
- Xuan Lin
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Lichang Dai
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Yafang Zhou
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, China
| | - Jian-Yu Shi
- Northwestern Polytechnical University, Xian, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Li Zeng
- AIDD department of Yuyao Biotech, Shanghai, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, 410013 Changsha, P. R. China
| | - Bosheng Song
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Philip S Yu
- University of Illinois at Chicago and also holds the Wexler Chair in Information Technology
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
22
|
Abu-Salih B, AL-Qurishi M, Alweshah M, AL-Smadi M, Alfayez R, Saadeh H. Healthcare knowledge graph construction: A systematic review of the state-of-the-art, open issues, and opportunities. JOURNAL OF BIG DATA 2023; 10:81. [PMID: 37274445 PMCID: PMC10225120 DOI: 10.1186/s40537-023-00774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
The incorporation of data analytics in the healthcare industry has made significant progress, driven by the demand for efficient and effective big data analytics solutions. Knowledge graphs (KGs) have proven utility in this arena and are rooted in a number of healthcare applications to furnish better data representation and knowledge inference. However, in conjunction with a lack of a representative KG construction taxonomy, several existing approaches in this designated domain are inadequate and inferior. This paper is the first to provide a comprehensive taxonomy and a bird's eye view of healthcare KG construction. Additionally, a thorough examination of the current state-of-the-art techniques drawn from academic works relevant to various healthcare contexts is carried out. These techniques are critically evaluated in terms of methods used for knowledge extraction, types of the knowledge base and sources, and the incorporated evaluation protocols. Finally, several research findings and existing issues in the literature are reported and discussed, opening horizons for future research in this vibrant area.
Collapse
Affiliation(s)
| | | | | | - Mohammad AL-Smadi
- Jordan University of Science and Technology, Irbid, Jordan
- Qatar University, Doha, Qatar
| | | | | |
Collapse
|
23
|
Zhang M, Gao H, Liao X, Ning B, Gu H, Yu B. DBGRU-SE: predicting drug-drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism. Brief Bioinform 2023:7176312. [PMID: 37225428 DOI: 10.1093/bib/bbad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
The prediction of drug-drug interactions (DDIs) is essential for the development and repositioning of new drugs. Meanwhile, they play a vital role in the fields of biopharmaceuticals, disease diagnosis and pharmacological treatment. This article proposes a new method called DBGRU-SE for predicting DDIs. Firstly, FP3 fingerprints, MACCS fingerprints, Pubchem fingerprints and 1D and 2D molecular descriptors are used to extract the feature information of the drugs. Secondly, Group Lasso is used to remove redundant features. Then, SMOTE-ENN is applied to balance the data to obtain the best feature vectors. Finally, the best feature vectors are fed into the classifier combining BiGRU and squeeze-and-excitation (SE) attention mechanisms to predict DDIs. After applying five-fold cross-validation, The ACC values of DBGRU-SE model on the two datasets are 97.51 and 94.98%, and the AUC are 99.60 and 98.85%, respectively. The results showed that DBGRU-SE had good predictive performance for drug-drug interactions.
Collapse
Affiliation(s)
| | - Hongli Gao
- Qingdao University of Science and Technology, China
| | - Xin Liao
- Qingdao University of Science and Technology, China
| | - Baoxing Ning
- Qingdao University of Science and Technology, China
| | - Haiming Gu
- Qingdao University of Science and Technology, China
| | - Bin Yu
- Qingdao University of Science and Technology, China
| |
Collapse
|
24
|
Hoang VT, Jeon HJ, You ES, Yoon Y, Jung S, Lee OJ. Graph Representation Learning and Its Applications: A Survey. SENSORS (BASEL, SWITZERLAND) 2023; 23:4168. [PMID: 37112507 PMCID: PMC10144941 DOI: 10.3390/s23084168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Graphs are data structures that effectively represent relational data in the real world. Graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classification, link prediction, etc. Graph representation learning aims to map graph entities to low-dimensional vectors while preserving graph structure and entity relationships. Over the decades, many models have been proposed for graph representation learning. This paper aims to show a comprehensive picture of graph representation learning models, including traditional and state-of-the-art models on various graphs in different geometric spaces. First, we begin with five types of graph embedding models: graph kernels, matrix factorization models, shallow models, deep-learning models, and non-Euclidean models. In addition, we also discuss graph transformer models and Gaussian embedding models. Second, we present practical applications of graph embedding models, from constructing graphs for specific domains to applying models to solve tasks. Finally, we discuss challenges for existing models and future research directions in detail. As a result, this paper provides a structured overview of the diversity of graph embedding models.
Collapse
Affiliation(s)
- Van Thuy Hoang
- Department of Artificial Intelligence, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (V.T.H.); (E.-S.Y.)
| | - Hyeon-Ju Jeon
- Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems (KIAPS), 35, Boramae-ro 5-gil, Dongjak-gu, Seoul 07071, Republic of Korea;
| | - Eun-Soon You
- Department of Artificial Intelligence, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (V.T.H.); (E.-S.Y.)
| | - Yoewon Yoon
- Department of Social Welfare, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea;
| | - Sungyeop Jung
- Semiconductor Devices and Circuits Laboratory, Advanced Institute of Convergence Technology (AICT), Seoul National University, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16229, Gyeonggi-do, Republic of Korea;
| | - O-Joun Lee
- Department of Artificial Intelligence, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (V.T.H.); (E.-S.Y.)
| |
Collapse
|
25
|
Zhang J, Chen M, Liu J, Peng D, Dai Z, Zou X, Li Z. A Knowledge-Graph-Based Multimodal Deep Learning Framework for Identifying Drug-Drug Interactions. Molecules 2023; 28:molecules28031490. [PMID: 36771157 PMCID: PMC9919258 DOI: 10.3390/molecules28031490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The identification of drug-drug interactions (DDIs) plays a crucial role in various areas of drug development. In this study, a deep learning framework (KGCN_NFM) is presented to recognize DDIs using coupling knowledge graph convolutional networks (KGCNs) with neural factorization machines (NFMs). A KGCN is used to learn the embedding representation containing high-order structural information and semantic information in the knowledge graph (KG). The embedding and the Morgan molecular fingerprint of drugs are then used as input of NFMs to predict DDIs. The performance and effectiveness of the current method have been evaluated and confirmed based on the two real-world datasets with different sizes, and the results demonstrate that KGCN_NFM outperforms the state-of-the-art algorithms. Moreover, the identified interactions between topotecan and dantron by KGCN_NFM were validated through MTT assays, apoptosis experiments, cell cycle analysis, and molecular docking. Our study shows that the combination therapy of the two drugs exerts a synergistic anticancer effect, which provides an effective treatment strategy against lung carcinoma. These results reveal that KGCN_NFM is a valuable tool for integrating heterogeneous information to identify potential DDIs.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meng Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (X.Z.); (Z.L.)
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Correspondence: (X.Z.); (Z.L.)
| |
Collapse
|
26
|
He Y, Yang Y, Su X, Zhao B, Xiong S, Hu L. Incorporating higher order network structures to improve miRNA-disease association prediction based on functional modularity. Brief Bioinform 2023; 24:6958503. [PMID: 36562706 DOI: 10.1093/bib/bbac562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
As microRNAs (miRNAs) are involved in many essential biological processes, their abnormal expressions can serve as biomarkers and prognostic indicators to prevent the development of complex diseases, thus providing accurate early detection and prognostic evaluation. Although a number of computational methods have been proposed to predict miRNA-disease associations (MDAs) for further experimental verification, their performance is limited primarily by the inadequacy of exploiting lower order patterns characterizing known MDAs to identify missing ones from MDA networks. Hence, in this work, we present a novel prediction model, namely HiSCMDA, by incorporating higher order network structures for improved performance of MDA prediction. To this end, HiSCMDA first integrates miRNA similarity network, disease similarity network and MDA network to preserve the advantages of all these networks. After that, it identifies overlapping functional modules from the integrated network by predefining several higher order connectivity patterns of interest. Last, a path-based scoring function is designed to infer potential MDAs based on network paths across related functional modules. HiSCMDA yields the best performance across all datasets and evaluation metrics in the cross-validation and independent validation experiments. Furthermore, in the case studies, 49 and 50 out of the top 50 miRNAs, respectively, predicted for colon neoplasms and lung neoplasms have been validated by well-established databases. Experimental results show that rich higher order organizational structures exposed in the MDA network gain new insight into the MDA prediction based on higher order connectivity patterns.
Collapse
Affiliation(s)
- Yizhou He
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, 430070, China
| | - Yue Yang
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaorui Su
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Bowei Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Shengwu Xiong
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, 430070, China
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
27
|
Qi G, Xu Z, Dan H, Jia X, Jiang Q, Zhang A, Li Z, Liu X, Ma J, Zheng X, Li Z. A Complex Heterogeneous Network Model of Disease Regulated by Noncoding RNAs: A Case Study of Unstable Angina Pectoris. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5852089. [PMID: 36590836 PMCID: PMC9803582 DOI: 10.1155/2022/5852089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are important types of noncoding RNAs, and there is a lack of holistic and systematic understanding of the functions they play in disease. We proposed a research strategy, including two parts network analysis and network modelling, to analyze, model, and predict the regulatory network of miRNAs from a network perspective, using unstable angina pectoris as an example. In the network analysis section, we proposed the WGCNA & SimCluster method using both correlation and similarity to find hub miRNAs, and validation on two datasets showed better results than the methods using correlation or similarity alone. In the network modelling section, we used six knowledge graph or graph neural network models for link prediction of three types of edges and multilabel classification of two types of nodes. Comparative experiments showed that the RotatE model was a good model for link prediction, while the RGCN model was the best model for multilabel classification. Potential target genes were predicted for hub miRNAs and validation of hub miRNA-target gene interactions, target genes as biomarkers and target gene functions were performed using a three-step validation approach. In conclusion, our study provides a new strategy to analyze and model miRNA regulatory networks.
Collapse
Affiliation(s)
- Guanpeng Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ze Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyu Dan
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Jia
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Jiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aijun Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhaohang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Liu
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Juman Ma
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaosong Zheng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
28
|
Wang M, Wang J, Weng G, Kang Y, Pan P, Li D, Deng Y, Li H, Hsieh CY, Hou T. ReMODE: a deep learning-based web server for target-specific drug design. J Cheminform 2022; 14:84. [PMID: 36510307 PMCID: PMC9743675 DOI: 10.1186/s13321-022-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Deep learning (DL) and machine learning contribute significantly to basic biology research and drug discovery in the past few decades. Recent advances in DL-based generative models have led to superior developments in de novo drug design. However, data availability, deep data processing, and the lack of user-friendly DL tools and interfaces make it difficult to apply these DL techniques to drug design. We hereby present ReMODE (Receptor-based MOlecular DEsign), a new web server based on DL algorithm for target-specific ligand design, which integrates different functional modules to enable users to develop customizable drug design tasks. As designed, the ReMODE sever can construct the target-specific tasks toward the protein targets selected by users. Meanwhile, the server also provides some extensions: users can optimize the drug-likeness or synthetic accessibility of the generated molecules, and control other physicochemical properties; users can also choose a sub-structure/scaffold as a starting point for fragment-based drug design. The ReMODE server also enables users to optimize the pharmacophore matching and docking conformations of the generated molecules. We believe that the ReMODE server will benefit researchers for drug discovery. ReMODE is publicly available at http://cadd.zju.edu.cn/relation/remode/ .
Collapse
Affiliation(s)
- Mingyang Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Jike Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Gaoqi Weng
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China ,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yu Kang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Peichen Pan
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Dan Li
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Yafeng Deng
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Honglin Li
- grid.28056.390000 0001 2163 4895Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237 People’s Republic of China
| | - Chang-Yu Hsieh
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| | - Tingjun Hou
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, 310058 Zhejiang People’s Republic of China
| |
Collapse
|
29
|
Zhang ML, Zhao BW, Su XR, He YZ, Yang Y, Hu L. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction. BMC Bioinformatics 2022; 23:516. [PMID: 36456957 PMCID: PMC9713188 DOI: 10.1186/s12859-022-05069-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Drug repositioning is a very important task that provides critical information for exploring the potential efficacy of drugs. Yet developing computational models that can effectively predict drug-disease associations (DDAs) is still a challenging task. Previous studies suggest that the accuracy of DDA prediction can be improved by integrating different types of biological features. But how to conduct an effective integration remains a challenging problem for accurately discovering new indications for approved drugs. METHODS In this paper, we propose a novel meta-path based graph representation learning model, namely RLFDDA, to predict potential DDAs on heterogeneous biological networks. RLFDDA first calculates drug-drug similarities and disease-disease similarities as the intrinsic biological features of drugs and diseases. A heterogeneous network is then constructed by integrating DDAs, disease-protein associations and drug-protein associations. With such a network, RLFDDA adopts a meta-path random walk model to learn the latent representations of drugs and diseases, which are concatenated to construct joint representations of drug-disease associations. As the last step, we employ the random forest classifier to predict potential DDAs with their joint representations. RESULTS To demonstrate the effectiveness of RLFDDA, we have conducted a series of experiments on two benchmark datasets by following a ten-fold cross-validation scheme. The results show that RLFDDA yields the best performance in terms of AUC and F1-score when compared with several state-of-the-art DDAs prediction models. We have also conducted a case study on two common diseases, i.e., paclitaxel and lung tumors, and found that 7 out of top-10 diseases and 8 out of top-10 drugs have already been validated for paclitaxel and lung tumors respectively with literature evidence. Hence, the promising performance of RLFDDA may provide a new perspective for novel DDAs discovery over heterogeneous networks.
Collapse
Affiliation(s)
- Meng-Long Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Yi-Zhou He
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Yue Yang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| |
Collapse
|
30
|
Zhao BW, Su XR, Hu PW, Ma YP, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Brief Bioinform 2022; 23:6692552. [PMID: 36125202 DOI: 10.1093/bib/bbac384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning (DR) is a promising strategy to discover new indicators of approved drugs with artificial intelligence techniques, thus improving traditional drug discovery and development. However, most of DR computational methods fall short of taking into account the non-Euclidean nature of biomedical network data. To overcome this problem, a deep learning framework, namely DDAGDL, is proposed to predict drug-drug associations (DDAs) by using geometric deep learning (GDL) over heterogeneous information network (HIN). Incorporating complex biological information into the topological structure of HIN, DDAGDL effectively learns the smoothed representations of drugs and diseases with an attention mechanism. Experiment results demonstrate the superior performance of DDAGDL on three real-world datasets under 10-fold cross-validation when compared with state-of-the-art DR methods in terms of several evaluation metrics. Our case studies and molecular docking experiments indicate that DDAGDL is a promising DR tool that gains new insights into exploiting the geometric prior knowledge for improved efficacy.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Peng-Wei Hu
- Merck China Innovation Hub, Shanghai 200000, China
| | - Yu-Peng Ma
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xi Zhou
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
31
|
Lin S, Chen W, Chen G, Zhou S, Wei DQ, Xiong Y. MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning. J Cheminform 2022; 14:81. [DOI: 10.1186/s13321-022-00659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse consequence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental events, but also elaborate the underlying mechanisms by how DDIs occur. Several computational methods have been proposed for multi-type DDI prediction, but room remains for improvement in prediction performance. In this study, we propose a supervised contrastive learning based method, MDDI-SCL, implemented by three-level loss functions, to predict multi-type DDIs. MDDI-SCL is mainly composed of three modules: drug feature encoder and mean squared error loss module, drug latent feature fusion and supervised contrastive loss module, multi-type DDI prediction and classification loss module. The drug feature encoder and mean squared error loss module uses self-attention mechanism and autoencoder to learn drug-level latent features. The drug latent feature fusion and supervised contrastive loss module uses multi-scale feature fusion to learn drug pair-level latent features. The prediction and classification loss module predicts DDI types of each drug pair. We evaluate MDDI-SCL on three different tasks of two datasets. Experimental results demonstrate that MDDI-SCL achieves better or comparable performance as the state-of-the-art methods. Furthermore, the effectiveness of supervised contrastive learning is validated by ablation experiment, and the feasibility of MDDI-SCL is supported by case studies. The source codes are available at https://github.com/ShenggengLin/MDDI-SCL.
Collapse
|
32
|
Ren ZH, You ZH, Yu CQ, Li LP, Guan YJ, Guo LX, Pan J. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Brief Bioinform 2022; 23:6692550. [PMID: 36070624 DOI: 10.1093/bib/bbac363] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
Drug-drug interactions (DDIs) prediction is a challenging task in drug development and clinical application. Due to the extremely large complete set of all possible DDIs, computer-aided DDIs prediction methods are getting lots of attention in the pharmaceutical industry and academia. However, most existing computational methods only use single perspective information and few of them conduct the task based on the biomedical knowledge graph (BKG), which can provide more detailed and comprehensive drug lateral side information flow. To this end, a deep learning framework, namely DeepLGF, is proposed to fully exploit BKG fusing local-global information to improve the performance of DDIs prediction. More specifically, DeepLGF first obtains chemical local information on drug sequence semantics through a natural language processing algorithm. Then a model of BFGNN based on graph neural network is proposed to extract biological local information on drug through learning embedding vector from different biological functional spaces. The global feature information is extracted from the BKG by our knowledge graph embedding method. In DeepLGF, for fusing local-global features well, we designed four aggregating methods to explore the most suitable ones. Finally, the advanced fusing feature vectors are fed into deep neural network to train and predict. To evaluate the prediction performance of DeepLGF, we tested our method in three prediction tasks and compared it with state-of-the-art models. In addition, case studies of three cancer-related and COVID-19-related drugs further demonstrated DeepLGF's superior ability for potential DDIs prediction. The webserver of the DeepLGF predictor is freely available at http://120.77.11.78/DeepLGF/.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi'an 710100, China.,School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Li-Ping Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Lu-Xiang Guo
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi'an 710100, China
| |
Collapse
|
33
|
Hassanzadeh R, Shabani-Mashcool S. Does adding the drug-drug similarity to drug-target interaction prediction methods make a noticeable improvement in their efficiency? BMC Bioinformatics 2022; 23:278. [PMID: 35836119 PMCID: PMC9281053 DOI: 10.1186/s12859-022-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Predicting drug–target interactions (DTIs) has become an important bioinformatics issue because it is one of the critical and preliminary stages of drug repositioning. Therefore, scientists are trying to develop more accurate computational methods for predicting drug–target interactions. These methods are usually based on machine learning or recommender systems and use biological and chemical information to improve the accuracy of predictions. In the background of these methods, there is a hypothesis that drugs with similar chemical structures have similar targets. So, the similarity between drugs as chemical information is added to the computational methods to improve the prediction results. The question that arises here is whether this claim is actually true? If so, what method should be used to calculate drug–drug chemical structure similarities? Will we obtain the same improvement from any DTI prediction method we use? Here, we investigated the amount of improvement that can be achieved by adding the drug–drug chemical structure similarities to the problem. For this purpose, we considered different types of real chemical similarities, random drug–drug similarities, four gold standard datasets and four state-of-the-art methods. Our results show that the type and size of data, the method which is used to predict the interactions, and the algorithm used to calculate the chemical similarities between drugs are all important, and it cannot be easily stated that adding drug–drug similarities can significantly improve the results. Therefore, our results could suggest a checklist for scientists who want to improve their machine learning methods.
Collapse
Affiliation(s)
- Reza Hassanzadeh
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| | - Soheila Shabani-Mashcool
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|