1
|
Qin X, Chen Z, Wu L, Ding R. A disulfidptosis-associated long noncoding RNA signature to predict low-grade glioma classification, prognosis, tumor microenvironment, and therapy regimens: Observational study. Medicine (Baltimore) 2024; 103:e39316. [PMID: 39183405 PMCID: PMC11346906 DOI: 10.1097/md.0000000000039316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
This study aimed to investigate the function of disulfidptosis-associated long noncoding RNAs (DAlncRNAs) in low-grade gliomas (LGG) through bioinformatics analysis and construct a signature to predict the classification, prognosis, tumor microenvironment, and selection of immunotherapy and chemotherapy in LGG. Genomic, clinical, and mutational information of 526 patients with LGG was retrieved from The Cancer Genome Atlas repository. A nonnegative matrix factorization algorithm was applied to classify patients with LGG. Univariate, LASSO regression, and multivariate Cox regression analyses were performed to determine prognostic DAlncRNAs. Following the median risk score, we defined the sample as a high-risk (HR) or low-risk group. Finally, survival, receiver operating characteristic curve, risk curve, principal component, independent prognosis, risk difference, functional enrichment, tumor microenvironment, immune cell infiltration, mutation, and drug sensitivity analyses were performed. Patients were classified into C1 and C2 subtypes associated with disulfidptosis. Eight prognostic DAlncRNAs (AC003035.2, AC010157.2, AC010273.3, AC011444.3, AC092667.1, AL450270.1, AL645608.2, and LINC01571) were identified, and a prognostic signature of LGG was developed. The DAlncRNA-based signature was found to be an independent prognostic factor in patients with LGG, thereby constructing a nomogram. In addition, in the HR group, immune function was more active and the tumor mutation burden was higher. The patients were mainly composed of subtype C2, and their prognosis was worse. Immunotherapy and chemotherapy were predicted in the HR and low-risk groups, respectively. Our study, based on DAlncRNAs, highlights 2 disulfidptosis-associated LGG subtypes with different prognostic and immune characteristics and creates a novel disulfidptosis-associated prognostic signature, which may inform the classification, prognosis, molecular pathogenesis, and therapeutic strategies for patients with LGG.
Collapse
Affiliation(s)
- Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Basaad A, Basurra S, Vakaj E, Eldaly AK, Abdelsamea MM. A BERT-GNN Approach for Metastatic Breast Cancer Prediction Using Histopathology Reports. Diagnostics (Basel) 2024; 14:1365. [PMID: 39001255 PMCID: PMC11241069 DOI: 10.3390/diagnostics14131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Metastatic breast cancer (MBC) continues to be a leading cause of cancer-related deaths among women. This work introduces an innovative non-invasive breast cancer classification model designed to improve the identification of cancer metastases. While this study marks the initial exploration into predicting MBC, additional investigations are essential to validate the occurrence of MBC. Our approach combines the strengths of large language models (LLMs), specifically the bidirectional encoder representations from transformers (BERT) model, with the powerful capabilities of graph neural networks (GNNs) to predict MBC patients based on their histopathology reports. This paper introduces a BERT-GNN approach for metastatic breast cancer prediction (BG-MBC) that integrates graph information derived from the BERT model. In this model, nodes are constructed from patient medical records, while BERT embeddings are employed to vectorise representations of the words in histopathology reports, thereby capturing semantic information crucial for classification by employing three distinct approaches (namely univariate selection, extra trees classifier for feature importance, and Shapley values to identify the features that have the most significant impact). Identifying the most crucial 30 features out of 676 generated as embeddings during model training, our model further enhances its predictive capabilities. The BG-MBC model achieves outstanding accuracy, with a detection rate of 0.98 and an area under curve (AUC) of 0.98, in identifying MBC patients. This remarkable performance is credited to the model's utilisation of attention scores generated by the LLM from histopathology reports, effectively capturing pertinent features for classification.
Collapse
Affiliation(s)
- Abdullah Basaad
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Shadi Basurra
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Edlira Vakaj
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (A.B.); (S.B.); (E.V.)
| | - Ahmed Karam Eldaly
- Department of Computer Science, University of Exeter, North Park Road, Exeter EX4 4QF, UK;
| | - Mohammed M. Abdelsamea
- Department of Computer Science, University of Exeter, North Park Road, Exeter EX4 4QF, UK;
| |
Collapse
|
3
|
Lin X, Zheng J, Cai X, Liu L, Jiang S, Liu Q, Sun Y. Glycometabolism and lipid metabolism related genes predict the prognosis of endometrial carcinoma and their effects on tumor cells. BMC Cancer 2024; 24:571. [PMID: 38720279 PMCID: PMC11080313 DOI: 10.1186/s12885-024-12327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.
Collapse
Affiliation(s)
- Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian University of Chinese Medicine, Fuzhou, 350014, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
4
|
Marmarelis MG, Littman R, Battaglin F, Niedzwiecki D, Venook A, Ambite JL, Galstyan A, Lenz HJ, Ver Steeg G. q-Diffusion leverages the full dimensionality of gene coexpression in single-cell transcriptomics. Commun Biol 2024; 7:400. [PMID: 38565955 PMCID: PMC11255321 DOI: 10.1038/s42003-024-06104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Unlocking the full dimensionality of single-cell RNA sequencing data (scRNAseq) is the next frontier to a richer, fuller understanding of cell biology. We introduce q-diffusion, a framework for capturing the coexpression structure of an entire library of genes, improving on state-of-the-art analysis tools. The method is demonstrated via three case studies. In the first, q-diffusion helps gain statistical significance for differential effects on patient outcomes when analyzing the CALGB/SWOG 80405 randomized phase III clinical trial, suggesting precision guidance for the treatment of metastatic colorectal cancer. Secondly, q-diffusion is benchmarked against existing scRNAseq classification methods using an in vitro PBMC dataset, in which the proposed method discriminates IFN-γ stimulation more accurately. The same case study demonstrates improvements in unsupervised cell clustering with the recent Tabula Sapiens human atlas. Finally, a local distributional segmentation approach for spatial scRNAseq, driven by q-diffusion, yields interpretable structures of human cortical tissue.
Collapse
Affiliation(s)
- Myrl G Marmarelis
- Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA.
| | - Russell Littman
- University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Francesca Battaglin
- Keck School of Medicine, University of Southern California, 1975 Zonal Ave., Los Angeles, CA, 90033, USA
| | | | - Alan Venook
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jose-Luis Ambite
- Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Aram Galstyan
- Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Heinz-Josef Lenz
- Keck School of Medicine, University of Southern California, 1975 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Greg Ver Steeg
- Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
- University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Qi D, Lu Y, Qu H, Dong Y, Jin Q, Sun M, Li Y, Quan C. Independent prognostic value of CLDN6 in bladder cancer based on M2 macrophages related signature. iScience 2024; 27:109138. [PMID: 38380255 PMCID: PMC10877962 DOI: 10.1016/j.isci.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
M2 macrophages are associated with the prognosis of bladder cancer. CLDN6 has been linked to immune infiltration and is crucial for predicting the prognosis in multi-tumor. The effect of CLDN6 on M2 macrophages in bladder cancer remains elusive. Here, we compared a total of 40 machine learning algorithms, then selected optimal algorithm to develop M2 macrophages-related signature (MMRS) based on the identified M2 macrophages related module. MMRS predicted the prognosis better than other models and associated to immunotherapy response. CLDN6, as an important variable in MMRS, was an independent factor for poor prognosis. We found that CLDN6 was highly expressed and affected immune infiltration, immunotherapy response, and M2 macrophages polarization. Meanwhile, CLDN6 promoted the growth of bladder cancer and enhanced the carcinogenic effect by inducing polarization of M2 macrophages. In total, CLDN6 is an independent risk factor in MMRS to predict the prognosis of bladder cancer.
Collapse
Affiliation(s)
- Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yan Lu
- The Department of Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| |
Collapse
|
6
|
Takasawa K, Asada K, Kaneko S, Shiraishi K, Machino H, Takahashi S, Shinkai N, Kouno N, Kobayashi K, Komatsu M, Mizuno T, Okubo Y, Mukai M, Yoshida T, Yoshida Y, Horinouchi H, Watanabe SI, Ohe Y, Yatabe Y, Kohno T, Hamamoto R. Advances in cancer DNA methylation analysis with methPLIER: use of non-negative matrix factorization and knowledge-based constraints to enhance biological interpretability. Exp Mol Med 2024; 56:646-655. [PMID: 38433247 PMCID: PMC10985003 DOI: 10.1038/s12276-024-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.
Collapse
Affiliation(s)
- Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Takaaki Mizuno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yu Okubo
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masami Mukai
- Division of Medical Informatics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| |
Collapse
|
7
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
8
|
Graffy P, Zimmerman L, Luo Y, Yu J, Choi Y, Zmora R, Lloyd-Jones D, Allen NB. Longitudinal clustering of Life's Essential 8 health metrics: application of a novel unsupervised learning method in the CARDIA study. J Am Med Inform Assoc 2024; 31:406-415. [PMID: 38070172 PMCID: PMC10797259 DOI: 10.1093/jamia/ocad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE Changes in cardiovascular health (CVH) during the life course are associated with future cardiovascular disease (CVD). Longitudinal clustering analysis using subgraph augmented non-negative matrix factorization (SANMF) could create phenotypic risk profiles of clustered CVH metrics. MATERIALS AND METHODS Life's Essential 8 (LE8) variables, demographics, and CVD events were queried over 15 ears in 5060 CARDIA participants with 18 years of subsequent follow-up. LE8 subgraphs were mined and a SANMF algorithm was applied to cluster frequently occurring subgraphs. K-fold cross-validation and diagnostics were performed to determine cluster assignment. Cox proportional hazard models were fit for future CV event risk and logistic regression was performed for cluster phenotyping. RESULTS The cohort (54.6% female, 48.7% White) produced 3 clusters of CVH metrics: Healthy & Late Obesity (HLO) (29.0%), Healthy & Intermediate Sleep (HIS) (43.2%), and Unhealthy (27.8%). HLO had 5 ideal LE8 metrics between ages 18 and 39 years, until BMI increased at 40. HIS had 7 ideal LE8 metrics, except sleep. Unhealthy had poor levels of sleep, smoking, and diet but ideal glucose. Race and employment were significantly different by cluster (P < .001) but not sex (P = .734). For 301 incident CV events, multivariable hazard ratios (HRs) for HIS and Unhealthy were 0.73 (0.53-1.00, P = .052) and 2.00 (1.50-2.68, P < .001), respectively versus HLO. A 15-year event survival was 97.0% (HIS), 96.3% (HLO), and 90.4% (Unhealthy, P < .001). DISCUSSION AND CONCLUSION SANMF of LE8 metrics identified 3 unique clusters of CVH behavior patterns. Clustering of longitudinal LE8 variables via SANMF is a robust tool for phenotypic risk assessment for future adverse cardiovascular events.
Collapse
Affiliation(s)
- Peter Graffy
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Lindsay Zimmerman
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jingzhi Yu
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Yuni Choi
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rachel Zmora
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Norrina Bai Allen
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
9
|
Huang C, Zhu F, Zhang H, Wang N, Huang Q. Identification of S1PR4 as an immune modulator for favorable prognosis in HNSCC through machine learning. iScience 2023; 26:107693. [PMID: 37680482 PMCID: PMC10480314 DOI: 10.1016/j.isci.2023.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane proteins and play a critical role as pharmacological targets. An improved understanding of GPCRs' involvement in tumor microenvironment may provide new perspectives for cancer therapy. This study used machine learning to classify head and neck squamous cell carcinoma (HNSCC) patients into two GPCR-based subtypes. Notably, these subtypes showed significant differences in prognosis, gene expression, and immune microenvironment, particularly CD8+ T cell infiltration. S1PR4 emerged as a key regulator distinguishing the subtypes, positively correlated with CD8+ T cell proportion and cytotoxicity in HNSCC. It was predominantly expressed in CX3CR1+CD8+ T cells among T cells. Upregulation of S1PR4 enhanced T cell function during CAR-T cell therapy, suggesting its potential in cancer immunotherapy. These findings highlight S1PR4 as an immune modulator for favorable prognosis in HNSCC, and offer a potential GPCR-targeted therapeutic option for HNSCC treatment.
Collapse
Affiliation(s)
- Chenshen Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengshuo Zhu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai, China
- Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ning Wang
- Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, China
| | - Qi Huang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Shen L, Huang H, Li J, Chen W, Yao Y, Hu J, Zhou J, Huang F, Ni C. Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature. Front Immunol 2023; 14:1199465. [PMID: 37469520 PMCID: PMC10352658 DOI: 10.3389/fimmu.2023.1199465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lipid metabolic reprogramming is gaining attention as a hallmark of cancers. Recent mounting evidence indicates that the malignant behavior of breast cancer (BC) is closely related to lipid metabolism. Here, we focus on the estrogen receptor-positive (ER+) subtype, the most common subgroup of BC, to explore immunometabolism landscapes and prognostic significance according to lipid metabolism-related genes (LMRGs). Methods Samples from The Cancer Genome Atlas (TCGA) database were used as training cohort, and samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), Gene Expression Omnibus (GEO) datasets and our cohort were applied for external validation. The survival-related LMRG molecular pattern and signature were constructed by unsupervised consensus clustering and least absolute shrinkage and selection operator (LASSO) analysis. A lipid metabolism-related clinicopathologic nomogram was established. Gene enrichment and pathway analysis were performed to explore the underlying mechanism. Immune landscapes, immunotherapy and chemotherapy response were further explored. Moreover, the relationship between gene expression and clinicopathological features was assessed by immunohistochemistry. Results Two LMRG molecular patterns were identified and associated with distinct prognoses and immune cell infiltration. Next, a prognostic signature based on nine survival-related LMRGs was established and validated. The signature was confirmed to be an independent prognostic factor and an optimal nomogram incorporating age and T stage (AUC of 5-year overall survival: 0.778). Pathway enrichment analysis revealed differences in immune activities, lipid biosynthesis and drug metabolism by comparing groups with low- and high-risk scores. Further exploration verified different immune microenvironment profiles, immune checkpoint expression, and sensitivity to immunotherapy and chemotherapy between the two groups. Finally, arachidonate 15-lipoxygenase (ALOX15) was selected as the most prominent differentially expressed gene between the two groups. Its expression was positively related to larger tumor size, more advanced tumor stage and vascular invasion in our cohort (n = 149). Discussion This is the first lipid metabolism-based signature with value for prognosis prediction and immunotherapy or chemotherapy guidance for ER+ BC.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengbo Huang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Srivastava A, Vinod PK. Identification and Characterization of Metabolic Subtypes of Endometrial Cancer Using a Systems-Level Approach. Metabolites 2023; 13:metabo13030409. [PMID: 36984849 PMCID: PMC10054278 DOI: 10.3390/metabo13030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological cancer worldwide. Understanding metabolic adaptation and its heterogeneity in tumor tissues may provide new insights and help in cancer diagnosis, prognosis, and treatment. In this study, we investigated metabolic alterations of EC to understand the variations in metabolism within tumor samples. Integration of transcriptomics data of EC (RNA-Seq) and the human genome-scale metabolic network was performed to identify the metabolic subtypes of EC and uncover the underlying dysregulated metabolic pathways and reporter metabolites in each subtype. The relationship between metabolic subtypes and clinical variables was explored. Further, we correlated the metabolic changes occurring at the transcriptome level with the genomic alterations. Based on metabolic profile, EC patients were stratified into two subtypes (metabolic subtype-1 and subtype-2) that significantly correlated to patient survival, tumor stages, mutation, and copy number variations. We observed the co-activation of the pentose phosphate pathway, one-carbon metabolism, and genes involved in controlling estrogen levels in metabolic subtype-2, which is linked to poor survival. PNMT and ERBB2 are also upregulated in metabolic subtype-2 samples and present on the same chromosome locus 17q12, which is amplified. PTEN and TP53 mutations show mutually exclusive behavior between subtypes and display a difference in survival. This work identifies metabolic subtypes with distinct characteristics at the transcriptome and genome levels, highlighting the metabolic heterogeneity within EC.
Collapse
|
12
|
Zhang Y, Lin X, Yao Z, Sun D, Lin X, Wang X, Yang C, Song J. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Comput Struct Biotechnol J 2022; 21:176-184. [PMID: 36544473 PMCID: PMC9755226 DOI: 10.1016/j.csbj.2022.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The spatial transcriptome has enabled researchers to resolve transcriptome expression profiles while preserving information about cell location to better understand the complex biological processes that occur in organisms. Due to technical limitations, the current high-throughput spatial transcriptome sequencing methods (known as next-generation sequencing with spatial barcoding methods or spot-based methods) cannot achieve single-cell resolution. A single measurement site, called a spot, in these technologies frequently contains multiple cells of various types. Computational tools for determining the cellular composition of a spot have emerged as a way to break through these limitations. These tools are known as deconvolution tools. Recently, a couple of deconvolution tools based on different strategies have been developed and have shown promise in different aspects. The resulting single-cell resolution expression profiles and/or single-cell composition of spots will significantly affect downstream data mining; thus, it is crucial to choose a suitable deconvolution tool. In this review, we present a list of currently available tools for spatial transcriptome deconvolution, categorize them based on the strategies they employ, and explain their advantages and limitations in detail in order to guide the selection of these tools in future studies.
Collapse
Affiliation(s)
- Yingkun Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Lin
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin Lin
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,Chemistry and Materials Science College, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China,Corresponding author.
| |
Collapse
|
13
|
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncol 2022; 11:82. [PMID: 36316731 PMCID: PMC9620610 DOI: 10.1186/s40164-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Takafumi Koyama
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Nobuji Kouno
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.258799.80000 0004 0372 2033Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303 Japan
| | - Tomohiro Yasuda
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Shuntaro Yui
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Makoto Hirata
- grid.272242.30000 0001 2168 5385Department of Genetic Medicine and Services, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Kuniko Sunami
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashi Kubo
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ken Takasawa
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Hidenori Machino
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Kazuma Kobayashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Ken Asada
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Masaaki Komatsu
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Syuzo Kaneko
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Yasushi Yatabe
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Noboru Yamamoto
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
14
|
Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci 2022; 9:962743. [PMID: 36304921 PMCID: PMC9595279 DOI: 10.3389/fmolb.2022.962743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The acceleration of large-scale sequencing and the progress in high-throughput computational analyses, defined as omics, was a hallmark for the comprehension of the biological processes in human health and diseases. In cancerology, the omics approach, initiated by genomics and transcriptomics studies, has revealed an incredible complexity with unsuspected molecular diversity within a same tumor type as well as spatial and temporal heterogeneity of tumors. The integration of multiple biological layers of omics studies brought oncology to a new paradigm, from tumor site classification to pan-cancer molecular classification, offering new therapeutic opportunities for precision medicine. In this review, we will provide a comprehensive overview of the latest innovations for multi-omics integration in oncology and summarize the largest multi-omics dataset available for adult and pediatric cancers. We will present multi-omics techniques for characterizing cancer biology and show how multi-omics data can be combined with clinical data for the identification of prognostic and treatment-specific biomarkers, opening the way to personalized therapy. To conclude, we will detail the newest strategies for dissecting the tumor immune environment and host–tumor interaction. We will explore the advances in immunomics and microbiomics for biomarker identification to guide therapeutic decision in immuno-oncology.
Collapse
Affiliation(s)
| | - Raoul Santiago
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire de L’Université Laval, Charles Bruneau Cancer Center, Québec, QC, Canada
- *Correspondence: Raoul Santiago, ; Arnaud Droit,
| | - Arnaud Droit
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada
- *Correspondence: Raoul Santiago, ; Arnaud Droit,
| |
Collapse
|