1
|
Herrera-Luis E, Benke K, Volk H, Ladd-Acosta C, Wojcik GL. Gene-environment interactions in human health. Nat Rev Genet 2024; 25:768-784. [PMID: 38806721 DOI: 10.1038/s41576-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/30/2024]
Abstract
Gene-environment interactions (G × E), the interplay of genetic variation with environmental factors, have a pivotal impact on human complex traits and diseases. Statistically, G × E can be assessed by determining the deviation from expectation of predictive models based solely on the phenotypic effects of genetics or environmental exposures. Despite the unprecedented, widespread and diverse use of G × E analytical frameworks, heterogeneity in their application and reporting hinders their applicability in public health. In this Review, we discuss study design considerations as well as G × E analytical frameworks to assess polygenic liability dependent on the environment, to identify specific genetic variants exhibiting G × E, and to characterize environmental context for these dynamics. We conclude with recommendations to address the most common challenges and pitfalls in the conceptualization, methodology and reporting of G × E studies, as well as future directions.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kelly Benke
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lelievre R, Rakesh M, Hysi PG, Little J, Freeman EE, Roy-Gagnon MH. Effect modification by sex of genetic associations of vitamin C related metabolites in the Canadian Longitudinal study on aging. Front Genet 2024; 15:1411931. [PMID: 39144724 PMCID: PMC11322087 DOI: 10.3389/fgene.2024.1411931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction: Vitamin C is an essential nutrient. Sex differences in serum vitamin C concentrations have been observed but are not fully known. Investigation of levels of metabolites may help shed light on how dietary and other environmental exposures interact with molecular processes. O-methylascorbate and ascorbic acid 2-sulfate are two metabolites in the vitamin C metabolic pathway. Past research has found genetic factors that influence the levels of these two metabolites. Therefore, we investigated possible effect modification by sex of genetic variant-metabolite associations and characterized the biological function of these interactions. Methods: We included individuals of European descent from the Canadian Longitudinal Study on Aging with available genetic and metabolic data (n = 9004). We used linear mixed models to tests for genome-wide associations with O-methylascorbate and ascorbic acid 2-sulfate, with and without a sex interaction. We also investigated the biological function of the important genetic variant-sex interactions found for each metabolite. Results: Two genome-wide statistically significant (p value < 5 × 10-8) interaction effects and several suggestive (p value < 10-5) interaction effects were found. These suggestive interaction effects were mapped to several genes including HSD11B2, associated with sex hormones, and AGRP, associated with hunger drive. The genes mapped to O-methylascorbate were differently expressed in the testis tissues, and the genes mapped to ascorbic acid 2-sulfate were differently expressed in stomach tissues. Discussion: By understanding the genetic factors that impact metabolites associated with vitamin C, we can better understand its function in disease risk and the mechanisms behind sex differences in vitamin C concentrations.
Collapse
Affiliation(s)
- Rebecca Lelievre
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Mohan Rakesh
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Pirro G. Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Ellen E. Freeman
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
3
|
Westerman KE, Sofer T. Many roads to a gene-environment interaction. Am J Hum Genet 2024; 111:626-635. [PMID: 38579668 PMCID: PMC11023920 DOI: 10.1016/j.ajhg.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Despite the importance of gene-environment interactions (GxEs) in improving and operationalizing genetic discovery, interpretation of any GxEs that are discovered can be surprisingly difficult. There are many potential biological and statistical explanations for a statistically significant finding and, likewise, it is not always clear what can be claimed based on a null result. A better understanding of the possible underlying mechanisms leading to a detected GxE can help investigators decide which are and which are not relevant to their hypothesis. Here, we provide a detailed explanation of five "phenomena," or data-generating mechanisms, that can lead to nonzero interaction estimates, as well as a discussion of specific instances in which they might be relevant. We hope that, given this framework, investigators can design more targeted experiments and provide cleaner interpretations of the associated results.
Collapse
Affiliation(s)
- Kenneth E Westerman
- Department of Medicine, Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA; Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Miao J, Wu Y, Lu Q. Statistical methods for gene-environment interaction analysis. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL STATISTICS 2024; 16:e1635. [PMID: 38699459 PMCID: PMC11064894 DOI: 10.1002/wics.1635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 05/05/2024]
Abstract
Most human complex phenotypes result from multiple genetic and environmental factors and their interactions. Understanding the mechanisms by which genetic and environmental factors interact offers valuable insights into the genetic architecture of complex traits and holds great potential for advancing precision medicine. The emergence of large population biobanks has led to the development of numerous statistical methods aiming at identifying gene-environment interactions (G × E). In this review, we present state-of-the-art statistical methodologies for G × E analysis. We will survey a spectrum of approaches for single-variant G × E mapping, followed by various techniques for polygenic G × E analysis. We conclude this review with a discussion on the future directions and challenges in G × E research.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yixuan Wu
- University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Center for Demography of Health and Aging, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Pham DT, Westerman KE, Pan C, Chen L, Srinivasan S, Isganaitis E, Vajravelu ME, Bacha F, Chernausek S, Gubitosi-Klug R, Divers J, Pihoker C, Marcovina SM, Manning AK, Chen H. Re-analysis and meta-analysis of summary statistics from gene-environment interaction studies. Bioinformatics 2023; 39:btad730. [PMID: 38039147 PMCID: PMC10724851 DOI: 10.1093/bioinformatics/btad730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
MOTIVATION statistics from genome-wide association studies enable many valuable downstream analyses that are more efficient than individual-level data analysis while also reducing privacy concerns. As growing sample sizes enable better-powered analysis of gene-environment interactions, there is a need for gene-environment interaction-specific methods that manipulate and use summary statistics. RESULTS We introduce two tools to facilitate such analysis, with a focus on statistical models containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure genome-wide interaction study to derive analogous sets of summary statistics with arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate multiple exposures from multiple studies. We demonstrate the value and efficiency of these tools by exploring alternative methods of accounting for ancestry-related population stratification in genome-wide interaction study in the UK Biobank as well as by conducting a multi-exposure genome-wide interaction study meta-analysis in cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the value of summary statistics from diverse and complex gene-environment interaction studies. AVAILABILITY AND IMPLEMENTATION REGEM and METAGEM are open-source projects freely available at https://github.com/large-scale-gxe-methods/REGEM and https://github.com/large-scale-gxe-methods/METAGEM.
Collapse
Affiliation(s)
- Duy T Pham
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Kenneth E Westerman
- Department of Medicine, Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA 02114, United States
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Cong Pan
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Ling Chen
- Department of Medicine, Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA 02114, United States
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Shylaja Srinivasan
- Department of Pediatrics, University of California, San Francisco, CA 94158, United States
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Boston, MA 02115, United States
| | - Mary Ellen Vajravelu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - Fida Bacha
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Steve Chernausek
- Department of Pediatrics, The University of Oklahoma College of Medicine, Oklahoma City, OK 73117, United States
| | - Rose Gubitosi-Klug
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jasmin Divers
- Department of Foundations of Medicine, New York University, New York, NY 10016, United States
| | - Catherine Pihoker
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, United States
| | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, University of Washington, Seattle, WA 98105, United States
| | - Alisa K Manning
- Department of Medicine, Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA 02114, United States
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| |
Collapse
|