1
|
Nuthakki VK, Barik R, Gangashetty SB, Srikanth G. Advanced molecular modeling of proteins: Methods, breakthroughs, and future prospects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2025; 103:23-41. [PMID: 40175043 DOI: 10.1016/bs.apha.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The contemporary advancements in molecular modeling of proteins have significantly enhanced our comprehension of biological processes and the functional roles of proteins on a global scale. The application of advanced methodologies, including homology modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics strategies, has empowered numerous researchers to forecast the behavior of protein macromolecules, elucidate drug-protein interactions, and develop drugs with enhanced precision. This chapter elucidates the advent of deep learning algorithms such as AlphaFold, a notable advancement that has significantly improved the precision of intricate protein structure predictions. The recent advancements have significantly enhanced the precision of protein predictions and expedited drug discovery and development processes. Integrating approaches like multi-scale modeling and hybrid methods incorporating reliable experimental data is anticipated to revolutionize and offer more significant implications for precision medicine and targeted treatments.
Collapse
Affiliation(s)
- Vijay Kumar Nuthakki
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad, Telangana, India
| | - Rakesh Barik
- Department of Pharmacognosy and Phytochemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad, Telangana, India
| | | | - Gatadi Srikanth
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Zhang F, Li Z, Zhao K, Zhao P, Zhang G. Prediction of Inter-Residue Multiple Distances and Exploration of Protein Multiple Conformations by Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1731-1739. [PMID: 38857126 DOI: 10.1109/tcbb.2024.3411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AlphaFold2 has achieved a major breakthrough in end-to-end prediction for static protein structures. However, protein conformational change is considered to be a key factor in protein biological function. Inter-residue multiple distances prediction is of great significance for research on protein multiple conformations exploration. In this study, we proposed an inter-residue multiple distances prediction method, DeepMDisPre, based on an improved network which integrates triangle update, axial attention and ResNet to predict multiple distances of residue pairs. We built a dataset which contains proteins with a single structure and proteins with multiple conformations to train the network. We tested DeepMDisPre on 114 proteins with multiple conformations. The results show that the inter-residue distance distribution predicted by DeepMDisPre tends to have multiple peaks for flexible residue pairs than for rigid residue pairs. On two cases of proteins with multiple conformations, we modeled the multiple conformations relatively accurately by using the predicted inter-residue multiple distances. In addition, we also tested the performance of DeepMDisPre on 279 proteins with a single structure. Experimental results demonstrate that the average contact accuracy of DeepMDisPre is higher than that of the comparative method. In terms of static protein modeling, the average TM-score of the 3D models built by DeepMDisPre is also improved compared with the comparative method.
Collapse
|
3
|
Hou M, Jin S, Cui X, Peng C, Zhao K, Song L, Zhang G. Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm. Interdiscip Sci 2024; 16:519-531. [PMID: 38190097 DOI: 10.1007/s12539-023-00597-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
The breakthrough of AlphaFold2 and the publication of AlphaFold DB represent a significant advance in the field of predicting static protein structures. However, AlphaFold2 models tend to represent a single static structure, and multiple-conformation prediction remains a challenge. In this work, we proposed a method named MultiSFold, which uses a distance-based multi-objective evolutionary algorithm to predict multiple conformations. To begin, multiple energy landscapes are constructed using different competing constraints generated by deep learning. Subsequently, an iterative modal exploration and exploitation strategy is designed to sample conformations, incorporating multi-objective optimization, geometric optimization and structural similarity clustering. Finally, the final population is generated using a loop-specific sampling strategy to adjust the spatial orientations. MultiSFold was evaluated against state-of-the-art methods using a benchmark set containing 80 protein targets, each characterized by two representative conformational states. Based on the proposed metric, MultiSFold achieves a remarkable success ratio of 56.25% in predicting multiple conformations, while AlphaFold2 only achieves 10.00%, which may indicate that conformational sampling combined with knowledge gained through deep learning has the potential to generate conformations spanning the range between different conformational states. In addition, MultiSFold was tested on 244 human proteins with low structural accuracy in AlphaFold DB to test whether it could further improve the accuracy of static structures. The experimental results demonstrate the performance of MultiSFold, with a TM-score better than that of AlphaFold2 by 2.97% and RoseTTAFold by 7.72%. The online server is at http://zhanglab-bioinf.com/MultiSFold .
Collapse
Affiliation(s)
- Minghua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Sirong Jin
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xinyue Cui
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Chunxiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Le Song
- BioMap & MBZUAI, Beijing, 100038, China.
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Zhao K, Zhao P, Wang S, Xia Y, Zhang G. FoldPAthreader: predicting protein folding pathway using a novel folding force field model derived from known protein universe. Genome Biol 2024; 25:152. [PMID: 38862984 PMCID: PMC11167914 DOI: 10.1186/s13059-024-03291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Protein folding has become a tractable problem with the significant advances in deep learning-driven protein structure prediction. Here we propose FoldPAthreader, a protein folding pathway prediction method that uses a novel folding force field model by exploring the intrinsic relationship between protein evolution and folding from the known protein universe. Further, the folding force field is used to guide Monte Carlo conformational sampling, driving the protein chain fold into its native state by exploring potential intermediates. On 30 example targets, FoldPAthreader successfully predicts 70% of the proteins whose folding pathway is consistent with biological experimental data.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Pengxin Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Suhui Wang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
5
|
Wang H, Liu D, Zhao K, Wang Y, Zhang G. SPDesign: protein sequence designer based on structural sequence profile using ultrafast shape recognition. Brief Bioinform 2024; 25:bbae146. [PMID: 38600663 PMCID: PMC11006797 DOI: 10.1093/bib/bbae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific physicochemical features. Inspired by the successful application of structure templates and pre-trained models in the protein structure prediction, we explored whether the representation of structural sequence profile can be used for protein sequence design. In this work, we propose SPDesign, a method for protein sequence design based on structural sequence profile using ultrafast shape recognition. Given an input backbone structure, SPDesign utilizes ultrafast shape recognition vectors to accelerate the search for similar protein structures in our in-house PAcluster80 structure database and then extracts the sequence profile through structure alignment. Combined with structural pre-trained knowledge and geometric features, they are further fed into an enhanced graph neural network for sequence prediction. The results show that SPDesign significantly outperforms the state-of-the-art methods, such as ProteinMPNN, Pifold and LM-Design, leading to 21.89%, 15.54% and 11.4% accuracy gains in sequence recovery rate on CATH 4.2 benchmark, respectively. Encouraging results also have been achieved on orphan and de novo (designed) benchmarks with few homologous sequences. Furthermore, analysis conducted by the PDBench tool suggests that SPDesign performs well in subdivided structures. More interestingly, we found that SPDesign can well reconstruct the sequences of some proteins that have similar structures but different sequences. Finally, the structural modeling verification experiment indicates that the sequences designed by SPDesign can fold into the native structures more accurately.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Corresponding authors. Guijun Zhang, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. E-mail: ; Yajun Wang, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China. E-mail:
| | - Guijun Zhang
- Corresponding authors. Guijun Zhang, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. E-mail: ; Yajun Wang, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China. E-mail:
| |
Collapse
|
6
|
Peng CX, Liang F, Xia YH, Zhao KL, Hou MH, Zhang GJ. Recent Advances and Challenges in Protein Structure Prediction. J Chem Inf Model 2024; 64:76-95. [PMID: 38109487 DOI: 10.1021/acs.jcim.3c01324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.
Collapse
Affiliation(s)
- Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fang Liang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming-Hua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
7
|
Xia Y, Zhao K, Liu D, Zhou X, Zhang G. Multi-domain and complex protein structure prediction using inter-domain interactions from deep learning. Commun Biol 2023; 6:1221. [PMID: 38040847 PMCID: PMC10692239 DOI: 10.1038/s42003-023-05610-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Accurately capturing domain-domain interactions is key to understanding protein function and designing structure-based drugs. Although AlphaFold2 has made a breakthrough on single domain, it should be noted that the structure modeling for multi-domain protein and complex remains a challenge. In this study, we developed a multi-domain and complex structure assembly protocol, named DeepAssembly, based on domain segmentation and single domain modeling algorithms. Firstly, DeepAssembly uses a population-based evolutionary algorithm to assemble multi-domain proteins by inter-domain interactions inferred from a developed deep learning network. Secondly, protein complexes are assembled by means of domains rather than chains using DeepAssembly. Experimental results show that on 219 multi-domain proteins, the average inter-domain distance precision by DeepAssembly is 22.7% higher than that of AlphaFold2. Moreover, DeepAssembly improves accuracy by 13.1% for 164 multi-domain structures with low confidence deposited in AlphaFold database. We apply DeepAssembly for the prediction of 247 heterodimers. We find that DeepAssembly successfully predicts the interface (DockQ ≥ 0.23) for 32.4% of the dimers, suggesting a lighter way to assemble complex structures by treating domains as assembly units and using inter-domain interactions learned from monomer structures.
Collapse
Affiliation(s)
- Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
8
|
Zhang L, Wang CC, Zhang Y, Chen X. GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores. Comput Biol Med 2023; 166:107512. [PMID: 37788507 DOI: 10.1016/j.compbiomed.2023.107512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Drug-target affinity prediction is a challenging task in drug discovery. The latest computational models have limitations in mining edge information in molecule graphs, accessing to knowledge in pharmacophores, integrating multimodal data of the same biomolecule and realizing effective interactions between two different biomolecules. To solve these problems, we proposed a method called Graph features and Pharmacophores augmented Cross-attention Networks based Drug-Target binding Affinity prediction (GPCNDTA). First, we utilized the GNN module, the linear projection unit and self-attention layer to correspondingly extract features of drugs and proteins. Second, we devised intramolecular and intermolecular cross-attention to respectively fuse and interact features of drugs and proteins. Finally, the linear projection unit was applied to gain final features of drugs and proteins, and the Multi-Layer Perceptron was employed to predict drug-target binding affinity. Three major innovations of GPCNDTA are as follows: (i) developing the residual CensNet and the residual EW-GCN to correspondingly extract features of drug and protein graphs, (ii) regarding pharmacophores as a new type of priors to heighten drug-target affinity prediction performance, and (iii) devising intramolecular and intermolecular cross-attention, in which the intramolecular cross-attention realizes the effective fusion of different modal data related to the same biomolecule, and the intermolecular cross-attention fulfills the information interaction between two different biomolecules in attention space. The test results on five benchmark datasets imply that GPCNDTA achieves the best performance compared with state-of-the-art computational models. Besides, relying on ablation experiments, we proved effectiveness of GNN modules, pharmacophores and two cross-attention strategies in improving the prediction accuracy, stability and reliability of GPCNDA. In case studies, we applied GPCNDTA to predict binding affinities between 3C-like proteinase and 185 drugs, and observed that most binding affinities predicted by GPCNDTA are close to corresponding experimental measurements.
Collapse
Affiliation(s)
- Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Huang Z, Cui X, Xia Y, Zhao K, Zhang G. Pathfinder: Protein folding pathway prediction based on conformational sampling. PLoS Comput Biol 2023; 19:e1011438. [PMID: 37695768 PMCID: PMC10513300 DOI: 10.1371/journal.pcbi.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/21/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023] Open
Abstract
The study of protein folding mechanism is a challenge in molecular biology, which is of great significance for revealing the movement rules of biological macromolecules, understanding the pathogenic mechanism of folding diseases, and designing protein engineering materials. Based on the hypothesis that the conformational sampling trajectory contain the information of folding pathway, we propose a protein folding pathway prediction algorithm named Pathfinder. Firstly, Pathfinder performs large-scale sampling of the conformational space and clusters the decoys obtained in the sampling. The heterogeneous conformations obtained by clustering are named seed states. Then, a resampling algorithm that is not constrained by the local energy basin is designed to obtain the transition probabilities of seed states. Finally, protein folding pathways are inferred from the maximum transition probabilities of seed states. The proposed Pathfinder is tested on our developed test set (34 proteins). For 11 widely studied proteins, we correctly predicted their folding pathways and specifically analyzed 5 of them. For 13 proteins, we predicted their folding pathways to be further verified by biological experiments. For 6 proteins, we analyzed the reasons for the low prediction accuracy. For the other 4 proteins without biological experiment results, potential folding pathways were predicted to provide new insights into protein folding mechanism. The results reveal that structural analogs may have different folding pathways to express different biological functions, homologous proteins may contain common folding pathways, and α-helices may be more prone to early protein folding than β-strands.
Collapse
Affiliation(s)
- Zhaohong Huang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xinyue Cui
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct Target Ther 2023; 8:115. [PMID: 36918529 PMCID: PMC10011802 DOI: 10.1038/s41392-023-01381-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind that can predict three-dimensional (3D) structures of proteins from amino acid sequences with atomic-level accuracy. Protein structure prediction is one of the most challenging problems in computational biology and chemistry, and has puzzled scientists for 50 years. The advent of AF2 presents an unprecedented progress in protein structure prediction and has attracted much attention. Subsequent release of structures of more than 200 million proteins predicted by AF2 further aroused great enthusiasm in the science community, especially in the fields of biology and medicine. AF2 is thought to have a significant impact on structural biology and research areas that need protein structure information, such as drug discovery, protein design, prediction of protein function, et al. Though the time is not long since AF2 was developed, there are already quite a few application studies of AF2 in the fields of biology and medicine, with many of them having preliminarily proved the potential of AF2. To better understand AF2 and promote its applications, we will in this article summarize the principle and system architecture of AF2 as well as the recipe of its success, and particularly focus on reviewing its applications in the fields of biology and medicine. Limitations of current AF2 prediction will also be discussed.
Collapse
Affiliation(s)
- Zhenyu Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Zhao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Runsheng Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| |
Collapse
|
11
|
Zhao K, Xia Y, Zhang F, Zhou X, Li SZ, Zhang G. Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader. Commun Biol 2023; 6:243. [PMID: 36871126 PMCID: PMC9985440 DOI: 10.1038/s42003-023-04605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Recognition of remote homologous structures is a necessary module in AlphaFold2 and is also essential for the exploration of protein folding pathways. Here, we propose a method, PAthreader, to recognize remote templates and explore folding pathways. Firstly, we design a three-track alignment between predicted distance profiles and structure profiles extracted from PDB and AlphaFold DB, to improve the recognition accuracy of remote templates. Secondly, we improve the performance of AlphaFold2 using the templates identified by PAthreader. Thirdly, we explore protein folding pathways based on our conjecture that dynamic folding information of protein is implicitly contained in its remote homologs. The results show that the average accuracy of PAthreader templates is 11.6% higher than that of HHsearch. In terms of structure modelling, PAthreader outperform AlphaFold2 and ranks first on the CAMEO blind test for the latest three months. Furthermore, we predict protein folding pathways for 37 proteins, in which the results of 7 proteins are almost consistent with those of biological experiments, and the other 30 human proteins have yet to be verified by biological experiments, revealing that folding information can be exploited from remote homologous structures.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Fujin Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Stan Z Li
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang, China.
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
12
|
Zhang L, Wang CC, Chen X. Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection. Brief Bioinform 2022; 23:6782838. [PMID: 36411674 DOI: 10.1093/bib/bbac468] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Exiting computational models for drug-target binding affinity prediction have much room for improvement in prediction accuracy, robustness and generalization ability. Most deep learning models lack interpretability analysis and few studies provide application examples. Based on these observations, we presented a novel model named Molecule Representation Block-based Drug-Target binding Affinity prediction (MRBDTA). MRBDTA is composed of embedding and positional encoding, molecule representation block and interaction learning module. The advantages of MRBDTA are reflected in three aspects: (i) developing Trans block to extract molecule features through improving the encoder of transformer, (ii) introducing skip connection at encoder level in Trans block and (iii) enhancing the ability to capture interaction sites between proteins and drugs. The test results on two benchmark datasets manifest that MRBDTA achieves the best performance compared with 11 state-of-the-art models. Besides, through replacing Trans block with single Trans encoder and removing skip connection in Trans block, we verified that Trans block and skip connection could effectively improve the prediction accuracy and reliability of MRBDTA. Then, relying on multi-head attention mechanism, we performed interpretability analysis to illustrate that MRBDTA can correctly capture part of interaction sites between proteins and drugs. In case studies, we firstly employed MRBDTA to predict binding affinities between Food and Drug Administration-approved drugs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication-related proteins. Secondly, we compared true binding affinities between 3C-like proteinase and 185 drugs with those predicted by MRBDTA. The final results of case studies reveal reliable performance of MRBDTA in drug design for SARS-CoV-2.
Collapse
Affiliation(s)
- Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
13
|
Feng Q, Hou M, Liu J, Zhao K, Zhang G. Construct a variable-length fragment library for de novo protein structure prediction. Brief Bioinform 2022; 23:6547572. [PMID: 35284936 DOI: 10.1093/bib/bbac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/12/2022] Open
Abstract
Although remarkable achievements, such as AlphaFold2, have been made in end-to-end structure prediction, fragment libraries remain essential for de novo protein structure prediction, which can help explore and understand the protein-folding mechanism. In this work, we developed a variable-length fragment library (VFlib). In VFlib, a master structure database was first constructed from the Protein Data Bank through sequence clustering. The hidden Markov model (HMM) profile of each protein in the master structure database was generated by HHsuite, and the secondary structure of each protein was calculated by DSSP. For the query sequence, the HMM-profile was first constructed. Then, variable-length fragments were retrieved from the master structure database through dynamically variable-length profile-profile comparison. A complete method for chopping the query HMM-profile during this process was proposed to obtain fragments with increased diversity. Finally, secondary structure information was used to further screen the retrieved fragments to generate the final fragment library of specific query sequence. The experimental results obtained with a set of 120 nonredundant proteins show that the global precision and coverage of the fragment library generated by VFlib were 55.04% and 94.95% at the RMSD cutoff of 1.5 Å, respectively. Compared with the benchmark method of NNMake, the global precision of our fragment library had increased by 62.89% with equivalent coverage. Furthermore, the fragments generated by VFlib and NNMake were used to predict structure models through fragment assembly. Controlled experimental results demonstrate that the average TM-score of VFlib was 16.00% higher than that of NNMake.
Collapse
Affiliation(s)
- Qiongqiong Feng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Minghua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
14
|
Liu J, Zhao KL, He GX, Wang LJ, Zhou XG, Zhang GJ. A de novo protein structure prediction by iterative partition sampling, topology adjustment and residue-level distance deviation optimization. Bioinformatics 2021; 38:99-107. [PMID: 34459867 DOI: 10.1093/bioinformatics/btab620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION With the great progress of deep learning-based inter-residue contact/distance prediction, the discrete space formed by fragment assembly cannot satisfy the distance constraint well. Thus, the optimal solution of the continuous space may not be achieved. Designing an effective closed-loop continuous dihedral angle optimization strategy that complements the discrete fragment assembly is crucial to improve the performance of the distance-assisted fragment assembly method. RESULTS In this article, we proposed a de novo protein structure prediction method called IPTDFold based on closed-loop iterative partition sampling, topology adjustment and residue-level distance deviation optimization. First, local dihedral angle crossover and mutation operators are designed to explore the conformational space extensively and achieve information exchange between the conformations in the population. Then, the dihedral angle rotation model of loop region with partial inter-residue distance constraints is constructed, and the rotation angle satisfying the constraints is obtained by differential evolution algorithm, so as to adjust the spatial position relationship between the secondary structures. Finally, the residue distance deviation is evaluated according to the difference between the conformation and the predicted distance, and the dihedral angle of the residue is optimized with biased probability. The final model is generated by iterating the above three steps. IPTDFold is tested on 462 benchmark proteins, 24 FM targets of CASP13 and 20 FM targets of CASP14. Results show that IPTDFold is significantly superior to the distance-assisted fragment assembly method Rosetta_D (Rosetta with distance). In particular, the prediction accuracy of IPTDFold does not decrease as the length of the protein increases. When using the same FastRelax protocol, the prediction accuracy of IPTDFold is significantly superior to that of trRosetta without orientation constraints, and is equivalent to that of the full version of trRosetta. AVAILABILITYAND IMPLEMENTATION The source code and executable are freely available at https://github.com/iobio-zjut/IPTDFold. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guang-Xing He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Liu-Jing Wang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao-Gen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
15
|
Hou M, Peng C, Zhou X, Zhang B, Zhang G. Multi contact-based folding method for de novo protein structure prediction. Brief Bioinform 2021; 23:6445108. [PMID: 34849573 DOI: 10.1093/bib/bbab463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 11/12/2022] Open
Abstract
Meta contact, which combines different contact maps into one to improve contact prediction accuracy and effectively reduce the noise from a single contact map, is a widely used method. However, protein structure prediction using meta contact cannot fully exploit the information carried by original contact maps. In this work, a multi contact-based folding method under the evolutionary algorithm framework, MultiCFold, is proposed. In MultiCFold, the thorough information of different contact maps is directly used by populations to guide protein structure folding. In addition, noncontact is considered as an effective supplement to contact information and can further assist protein folding. MultiCFold is tested on a set of 120 nonredundant proteins, and the average TM-score and average RMSD reach 0.617 and 5.815 Å, respectively. Compared with the meta contact-based method, MetaCFold, average TM-score and average RMSD have a 6.62 and 8.82% improvement. In particular, the import of noncontact information increases the average TM-score by 6.30%. Furthermore, MultiCFold is compared with four state-of-the-art methods of CASP13 on the 24 FM targets, and results show that MultiCFold is significantly better than other methods after the full-atom relax procedure.
Collapse
Affiliation(s)
- Minghua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chunxiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Hangzhou 310023, China
| | - Biao Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|