1
|
Defard T, Desrentes A, Fouillade C, Mueller F. Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example. Methods Mol Biol 2025; 2864:77-105. [PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spatial transcriptomics methods provide insight into the cellular heterogeneity and spatial architecture of complex, multicellular systems. Combining molecular and spatial information provides important clues to study tissue architecture in development and disease. Here, we present a comprehensive do-it-yourself (DIY) guide to perform such experiments at reduced costs leveraging open-source approaches. This guide spans the entire life cycle of a project, from its initial definition to experimental choices, wet lab approaches, instrumentation, and analysis. As a concrete example, we focus on tertiary lymphoid structures (TLS), which we use to develop typical questions that can be addressed by these approaches.
Collapse
Affiliation(s)
- Thomas Defard
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | - Auxence Desrentes
- UMRS1135 Sorbonne University, Paris, France
- INSERM U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre for Immunology and Microbial Infections (CIMI), Paris, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France.
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France.
| |
Collapse
|
2
|
Coullomb A, Monsarrat P, Pancaldi V. mosna reveals different types of cellular interactions predictive of response to immunotherapies and survival in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.532947. [PMID: 36993595 PMCID: PMC10055099 DOI: 10.1101/2023.03.16.532947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spatially resolved omics enable the discovery of tissue organization of biological or clinical importance. Despite the existence of several methods, performing a rational analysis including multiple algorithms while integrating different conditions such as clinical data is still not trivial. To make such investigations more accessible, we developed mosna, a Python package to analyze spatial omics data with respect to clinical or biological data and to gain insight on cell interaction patterns or tissue architecture of biological relevance. mosna is compatible with all spatial omics methods, it leverages tysserand to build accurate spatial networks, and is compatible with Squidpy. It proposes an analysis pipeline, in which increasingly complex features computed at each step can be explored in integration with clinical data, either with easy-to-use descriptive statistics and data visualization, or by seamlessly training machine learning models and identifying variables with the most predictive power. mosna can take as input any dataset produced by spatial omics methods, including sub-cellular resolved transcriptomics (MERFISH, seqFISH) and proteomics (CODEX, MIBI-TOF, low-plex immuno-fluorescence), as well as spot-based spatial transcriptomics (10x Visium). Integration with experimental metadata or clinical data is adapted to binary conditions, such as biological treatments or response status of patients, and to survival data. We demonstrate the proposed analysis pipeline on two spatially resolved proteomic datasets containing either binary response to immunotherapy or survival data. mosna identifies features describing cellular composition and spatial distribution that can provide biological insight regarding factors that affect response to immunotherapies or survival.
Collapse
Affiliation(s)
- Alexis Coullomb
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Oral Medicine Department and Hospital of Toulouse - Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Verstraete N, Marku M, Domagala M, Arduin H, Bordenave J, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. An agent-based model of monocyte differentiation into tumour-associated macrophages in chronic lymphocytic leukemia. iScience 2023; 26:106897. [PMID: 37332613 PMCID: PMC10275988 DOI: 10.1016/j.isci.2023.106897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism against pathogens. In tumors, recent studies have uncovered complex macrophage populations, including tumor-associated macrophages, which support tumorigenesis through cancer hallmarks such as immunosuppression, angiogenesis, or matrix remodeling. In the case of chronic lymphocytic leukemia, these macrophages are known as nurse-like cells (NLCs) and they protect leukemic cells from spontaneous apoptosis, contributing to their chemoresistance. We propose an agent-based model of monocyte differentiation into NLCs upon contact with leukemic B cells in vitro. We performed patient-specific model optimization using cultures of peripheral blood mononuclear cells from patients. Using our model, we were able to reproduce the temporal survival dynamics of cancer cells in a patient-specific manner and to identify patient groups related to distinct macrophage phenotypes. Our results show a potentially important role of phagocytosis in the polarization process of NLCs and in promoting cancer cells' enhanced survival.
Collapse
Affiliation(s)
- Nina Verstraete
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Malvina Marku
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Domagala
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Hélène Arduin
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Bordenave
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Loïc Ysebaert
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France
| | - Mary Poupot
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Schaeffer M, Nollmann M. Contributions of 3D chromatin structure to cell-type-specific gene regulation. Curr Opin Genet Dev 2023; 79:102032. [PMID: 36893484 DOI: 10.1016/j.gde.2023.102032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Eukaryotic genomes are organized in 3D in a multiscale manner, and different mechanisms acting at each of these scales can contribute to transcriptional regulation. However, the large single-cell variability in 3D chromatin structures represents a challenge to understand how transcription may be differentially regulated between cell types in a robust and efficient manner. Here, we describe the different mechanisms by which 3D chromatin structure was shown to contribute to cell-type-specific transcriptional regulation. Excitingly, several novel methodologies able to measure 3D chromatin conformation and transcription in single cells in their native tissue context, or to detect the dynamics of cis-regulatory interactions, are starting to allow quantitative dissection of chromatin structure noise and relate it to how transcription may be regulated between different cell types and cell states.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France.
| |
Collapse
|