1
|
Razaghi-Moghadam Z, Soleymani Babadi F, Nikoloski Z. Harnessing the optimization of enzyme catalytic rates in engineering of metabolic phenotypes. PLoS Comput Biol 2024; 20:e1012576. [PMID: 39495797 PMCID: PMC11563432 DOI: 10.1371/journal.pcbi.1012576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The increasing availability of enzyme turnover number measurements from experiments and of turnover number predictions from deep learning models prompts the use of these enzyme parameters in precise metabolic engineering. Yet, there is no computational approach that allows the prediction of metabolic engineering strategies that rely on the modification of turnover numbers. It is also unclear if modifications of turnover numbers without alterations in the host's transcriptional regulatory machinery suffice to increase the production of chemicals of interest. Here, we present a constraint-based modeling approach, termed Overcoming Kinetic rate Obstacles (OKO), that uses enzyme-constrained metabolic models to predict in silico strategies to increase the production of a given chemical, while ensuring specified cell growth. We demonstrate that the application of OKO to enzyme-constrained metabolic models of Escherichia coli and Saccharomyces cerevisiae results in strategies that can at least double the production of over 40 compounds with little penalty to growth. Interestingly, we show that the overproduction of compounds of interest does not entail only an increase in the values of turnover numbers. Lastly, we demonstrate that a refinement of OKO, allowing also for manipulation of enzyme abundance, facilitates the usage of the available compendia and deep learning models of turnover numbers in the design of precise metabolic engineering strategies. Our results expand the usage of genome-scale metabolic models toward the identification of targets for protein engineering, allowing their direct usage in the generation of innovative metabolic engineering designs for various biotechnological applications.
Collapse
Affiliation(s)
- Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fayaz Soleymani Babadi
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Ferreira MADM, Silveira WBD, Nikoloski Z. Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes. Biotechnol Bioeng 2024; 121:915-930. [PMID: 38178617 DOI: 10.1002/bit.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
Collapse
Affiliation(s)
| | | | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
3
|
Chen Y, Gustafsson J, Tafur Rangel A, Anton M, Domenzain I, Kittikunapong C, Li F, Yuan L, Nielsen J, Kerkhoven EJ. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat Protoc 2024; 19:629-667. [PMID: 38238583 DOI: 10.1038/s41596-023-00931-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/13/2023] [Indexed: 03/10/2024]
Abstract
Genome-scale metabolic models (GEMs) are computational representations that enable mathematical exploration of metabolic behaviors within cellular and environmental constraints. Despite their wide usage in biotechnology, biomedicine and fundamental studies, there are many phenotypes that GEMs are unable to correctly predict. GECKO is a method to improve the predictive power of a GEM by incorporating enzymatic constraints using kinetic and omics data. GECKO has enabled reconstruction of enzyme-constrained metabolic models (ecModels) for diverse organisms, which show better predictive performance than conventional GEMs. In this protocol, we describe how to use the latest version GECKO 3.0; the procedure has five stages: (1) expansion from a starting metabolic model to an ecModel structure, (2) integration of enzyme turnover numbers into the ecModel structure, (3) model tuning, (4) integration of proteomics data into the ecModel and (5) simulation and analysis of ecModels. GECKO 3.0 incorporates deep learning-predicted enzyme kinetics, paving the way for improved metabolic models for virtually any organism and cell line in the absence of experimental data. The time of running the whole protocol is organism dependent, e.g., ~5 h for yeast.
Collapse
Affiliation(s)
- Yu Chen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Johan Gustafsson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark
| | - Mihail Anton
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Feiran Li
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Le Yuan
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark.
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Moura Ferreira MAD, Wendering P, Arend M, Batista da Silveira W, Nikoloski Z. Accurate prediction of in vivo protein abundances by coupling constraint-based modelling and machine learning. Metab Eng 2023; 80:184-192. [PMID: 37802292 DOI: 10.1016/j.ymben.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Quantification of how different environmental cues affect protein allocation can provide important insights for understanding cell physiology. While absolute quantification of proteins can be obtained by resource-intensive mass-spectrometry-based technologies, prediction of protein abundances offers another way to obtain insights into protein allocation. Here we present CAMEL, a framework that couples constraint-based modelling with machine learning to predict protein abundance for any environmental condition. This is achieved by building machine learning models that leverage static features, derived from protein sequences, and condition-dependent features predicted from protein-constrained metabolic models. Our findings demonstrate that CAMEL results in excellent prediction of protein allocation in E. coli (average Pearson correlation of at least 0.9), and moderate performance in S. cerevisiae (average Pearson correlation of at least 0.5). Therefore, CAMEL outperformed contending approaches without using molecular read-outs from unseen conditions and provides a valuable tool for using protein allocation in biotechnological applications.
Collapse
Affiliation(s)
| | - Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany; Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany; Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | | | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany; Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany.
| |
Collapse
|
5
|
Hashemi S, Razaghi-Moghadam Z, Nikoloski Z. Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony. PLoS Comput Biol 2023; 19:e1011489. [PMID: 37721963 PMCID: PMC10538754 DOI: 10.1371/journal.pcbi.1011489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/28/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.
Collapse
Affiliation(s)
- Seirana Hashemi
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
6
|
Arend M, Zimmer D, Xu R, Sommer F, Mühlhaus T, Nikoloski Z. Proteomics and constraint-based modelling reveal enzyme kinetic properties of Chlamydomonas reinhardtii on a genome scale. Nat Commun 2023; 14:4781. [PMID: 37553325 PMCID: PMC10409818 DOI: 10.1038/s41467-023-40498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Metabolic engineering of microalgae offers a promising solution for sustainable biofuel production, and rational design of engineering strategies can be improved by employing metabolic models that integrate enzyme turnover numbers. However, the coverage of turnover numbers for Chlamydomonas reinhardtii, a model eukaryotic microalga accessible to metabolic engineering, is 17-fold smaller compared to the heterotrophic cell factory Saccharomyces cerevisiae. Here we generate quantitative protein abundance data of Chlamydomonas covering 2337 to 3708 proteins in various growth conditions to estimate in vivo maximum apparent turnover numbers. Using constrained-based modeling we provide proxies for in vivo turnover numbers of 568 reactions, representing a 10-fold increase over the in vitro data for Chlamydomonas. Integration of the in vivo estimates instead of in vitro values in a metabolic model of Chlamydomonas improved the accuracy of enzyme usage predictions. Our results help in extending the knowledge on uncharacterized enzymes and improve biotechnological applications of Chlamydomonas.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - David Zimmer
- Computational Systems Biology, TU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Rudan Xu
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
7
|
Wendering P, Arend M, Razaghi-Moghadam Z, Nikoloski Z. Data integration across conditions improves turnover number estimates and metabolic predictions. Nat Commun 2023; 14:1485. [PMID: 36932067 PMCID: PMC10023748 DOI: 10.1038/s41467-023-37151-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Turnover numbers characterize a key property of enzymes, and their usage in constraint-based metabolic modeling is expected to increase the prediction accuracy of diverse cellular phenotypes. In vivo turnover numbers can be obtained by integrating reaction rate and enzyme abundance measurements from individual experiments. Yet, their contribution to improving predictions of condition-specific cellular phenotypes remains elusive. Here, we show that available in vitro and in vivo turnover numbers lead to poor prediction of condition-specific growth rates with protein-constrained models of Escherichia coli and Saccharomyces cerevisiae, particularly when protein abundances are considered. We demonstrate that correction of turnover numbers by simultaneous consideration of proteomics and physiological data leads to improved predictions of condition-specific growth rates. Moreover, the obtained estimates are more precise than corresponding in vitro turnover numbers. Therefore, our approach provides the means to correct turnover numbers and paves the way towards cataloguing kcatomes of other organisms.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
8
|
Huß S, Judd RS, Koper K, Maeda HA, Nikoloski Z. An automated workflow that generates atom mappings for large-scale metabolic models and its application to Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1486-1500. [PMID: 35819300 DOI: 10.1111/tpj.15903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating 15 N isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future 15 N-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.
Collapse
Affiliation(s)
- Sebastian Huß
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24- 25, 14476, Potsdam, Germany
| | - Rika Siedah Judd
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Kaan Koper
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24- 25, 14476, Potsdam, Germany
| |
Collapse
|