1
|
Peng J, Fu L, Yang G, Cao D. Advanced AI-Driven Prediction of Pregnancy-Related Adverse Drug Reactions. J Chem Inf Model 2024; 64:9286-9298. [PMID: 39611337 DOI: 10.1021/acs.jcim.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ensuring drug safety during pregnancy is critical due to the potential risks to both the mother and fetus. However, the exclusion of pregnant women from clinical trials complicates the assessment of adverse drug reactions (ADRs) in this population. This study aimed to develop and validate risk prediction models for pregnancy-related ADRs of drugs using advanced Machine Learning (ML) and Deep Learning (DL) techniques, leveraging real-world data from the FDA Adverse Event Reporting System. We explored three methods─Information Component, Reporting Odds Ratio, and 95% confidence interval of ROR─for classifying drugs into high-risk and low-risk categories. DL models, including Directed Message Passing Neural Networks (DMPNN), Graph Neural Networks, and Graph Convolutional Networks, were developed and compared to traditional ML models like Random Forest, Support Vector Machines, and XGBoost. Among these, the DMPNN model, which integrated molecular graph information and molecular descriptors, exhibited the highest predictive performance, particularly at the preferred term level. The model was validated against external data sets from SIDER and DailyMed, demonstrating strong generalizability. Additionally, the model was applied to assess the risk of 22 oral hypoglycemic drugs, and potential substructure alerts for pregnancy-related ADRs were identified. These findings suggest that the DMPNN model is a valuable tool for predicting ADRs in pregnant women, offering significant advancement in drug safety assessment and providing crucial insights for safer medication use during pregnancy.
Collapse
Affiliation(s)
- Jinfu Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha 410031, Hunan, China
| | - Li Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha 410031, Hunan, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha 410031, Hunan, China
- The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410031, Hunan, China
| | - Dongshen Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Changsha 410031, Hunan, China
| |
Collapse
|
2
|
Ricci CA, Crysup B, Phillips NR, Ray WC, Santillan MK, Trask AJ, Woerner AE, Goulopoulou S. Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research. Am J Physiol Heart Circ Physiol 2024; 327:H417-H432. [PMID: 38847756 PMCID: PMC11442027 DOI: 10.1152/ajpheart.00149.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.
Collapse
Affiliation(s)
- Contessa A Ricci
- College of Nursing, Washington State University, Spokane, Washington, United States
- IREACH: Institute for Research and Education to Advance Community Health, Washington State University, Seattle, Washington, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States
| | - Benjamin Crysup
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
| | - William C Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - August E Woerner
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
3
|
Vittoria Togo M, Mastrolorito F, Orfino A, Graps EA, Tondo AR, Altomare CD, Ciriaco F, Trisciuzzi D, Nicolotti O, Amoroso N. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol 2024; 20:561-577. [PMID: 38141160 DOI: 10.1080/17425255.2023.2298827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being. AREAS COVERED This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies. EXPERT OPINION The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Mastrolorito
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Angelica Orfino
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per laSalute ed il Sociale, Presidenza della Regione Puglia", Bari, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fulvio Ciriaco
- Department of Chemistry, Universitá degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nicola Amoroso
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Shtar G, Solomon A, Mazuz E, Rokach L, Shapira B. A simplified similarity-based approach for drug-drug interaction prediction. PLoS One 2023; 18:e0293629. [PMID: 37943768 PMCID: PMC10635435 DOI: 10.1371/journal.pone.0293629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Drug-drug interactions (DDIs) are a critical component of drug safety surveillance. Laboratory studies aimed at detecting DDIs are typically difficult, expensive, and time-consuming; therefore, developing in-silico methods is critical. Machine learning-based approaches for DDI prediction have been developed; however, in many cases, their ability to achieve high accuracy relies on data only available towards the end of the molecule lifecycle. Here, we propose a simple yet effective similarity-based method for preclinical DDI prediction where only the chemical structure is available. We test the model on new, unseen drugs. To focus on the preclinical problem setting, we conducted a retrospective analysis and tested the models on drugs that were added to a later version of the DrugBank database. We extend an existing method, adjacency matrix factorization with propagation (AMFP), to support unseen molecules by applying a new lookup mechanism to the drugs' chemical structure, lookup adjacency matrix factorization with propagation (LAMFP). We show that using an ensemble of different similarity measures improves the results. We also demonstrate that Chemprop, a message-passing neural network, can be used for DDI prediction. In computational experiments, LAMFP results in high accuracy, with an area under the receiver operating characteristic curve of 0.82 for interactions involving a new drug and an existing drug and for interactions involving only existing drugs. Moreover, LAMFP outperforms state-of-the-art, complex graph neural network DDI prediction methods.
Collapse
Affiliation(s)
- Guy Shtar
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Adir Solomon
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Eyal Mazuz
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rokach
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bracha Shapira
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Aljarf R, Tang S, Pires DEV, Ascher DB. embryoTox: Using Graph-Based Signatures to Predict the Teratogenicity of Small Molecules. J Chem Inf Model 2023; 63:432-441. [PMID: 36595441 DOI: 10.1021/acs.jcim.2c00824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Teratogenic drugs can lead to extreme fetal malformation and consequently critically influence the fetus's health, yet the teratogenic risks associated with most approved drugs are unknown. Here, we propose a novel predictive tool, embryoTox, which utilizes a graph-based signature representation of the chemical structure of a small molecule to predict and classify molecules likely to be safe during pregnancy. embryoTox was trained and validated using in vitro bioactivity data of over 700 small molecules with characterized teratogenicity effects. Our final model achieved an area under the receiver operating characteristic curve (AUC) of up to 0.96 on 10-fold cross-validation and 0.82 on nonredundant blind tests, outperforming alternative approaches. We believe that our predictive tool will provide a practical resource for optimizing screening libraries to determine effective and safe molecules to use during pregnancy. To provide a simple and integrated platform to rapidly screen for potential safe molecules and their risk factors, we made embryoTox freely available online at https://biosig.lab.uq.edu.au/embryotox/.
Collapse
Affiliation(s)
- Raghad Aljarf
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Simon Tang
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Douglas E V Pires
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
- School of Computing and Information Systems, University of Melbourne, Parkville 3052, Victoria, Australia
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville 3052, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
6
|
Shtar G, Greenstein-Messica A, Mazuz E, Rokach L, Shapira B. Predicting drug characteristics using biomedical text embedding. BMC Bioinformatics 2022; 23:526. [PMID: 36476573 PMCID: PMC9730627 DOI: 10.1186/s12859-022-05083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug-drug interactions (DDIs) are preventable causes of medical injuries and often result in doctor and emergency room visits. Previous research demonstrates the effectiveness of using matrix completion approaches based on known drug interactions to predict unknown Drug-drug interactions. However, in the case of a new drug, where there is limited or no knowledge regarding the drug's existing interactions, such an approach is unsuitable, and other drug's preferences can be used to accurately predict new Drug-drug interactions. METHODS We propose adjacency biomedical text embedding (ABTE) to address this limitation by using a hybrid approach which combines known drugs' interactions and the drug's biomedical text embeddings to predict the DDIs of both new and well known drugs. RESULTS Our evaluation demonstrates the superiority of this approach compared to recently published DDI prediction models and matrix factorization-based approaches. Furthermore, we compared the use of different text embedding methods in ABTE, and found that the concept embedding approach, which involves biomedical information in the embedding process, provides the highest performance for this task. Additionally, we demonstrate the effectiveness of leveraging biomedical text embedding for additional drugs' biomedical prediction task by presenting text embedding's contribution to a multi-modal pregnancy drug safety classification. CONCLUSION Text and concept embeddings created by analyzing a domain-specific large-scale biomedical corpora can be used for predicting drug-related properties such as Drug-drug interactions and drug safety prediction. Prediction models based on the embeddings resulted in comparable results to hand-crafted features, however text embeddings do not require manual categorization or data collection and rely solely on the published literature.
Collapse
Affiliation(s)
- Guy Shtar
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Asnat Greenstein-Messica
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Mazuz
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rokach
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bracha Shapira
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|