1
|
Sederman C, Yang CH, Cortes-Sanchez E, Di Sera T, Huang X, Scherer SD, Zhao L, Chu Z, White ER, Atkinson A, Wagstaff J, Varley KE, Lewis MT, Qiao Y, Welm BE, Welm AL, Marth GT. A precision oncology-focused deep learning framework for personalized selection of cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628190. [PMID: 39763776 PMCID: PMC11702554 DOI: 10.1101/2024.12.12.628190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Precision oncology matches tumors to targeted therapies based on the presence of actionable molecular alterations. However, most tumors lack actionable alterations, restricting treatment options to cytotoxic chemotherapies for which few data-driven prioritization strategies currently exist. Here, we report an integrated computational/experimental treatment selection approach applicable for both chemotherapies and targeted agents irrespective of actionable alterations. We generated functional drug response data on a large collection of patient-derived tumor models and used it to train ScreenDL, a novel deep learning-based cancer drug response prediction model. ScreenDL leverages the combination of tumor omic and functional drug screening data to predict the most efficacious treatments. We show that ScreenDL accurately predicts response to drugs with diverse mechanisms, outperforming existing methods and approved biomarkers. In our preclinical study, this approach achieved superior clinical benefit and objective response rates in breast cancer patient-derived xenografts, suggesting that testing ScreenDL in clinical trials may be warranted.
Collapse
Affiliation(s)
- Casey Sederman
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Chieh-Hsiang Yang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tony Di Sera
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Xiaomeng Huang
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Sandra D Scherer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ling Zhao
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Zhengtao Chu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Eliza R White
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Aaron Atkinson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jadon Wagstaff
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael T Lewis
- Departments of Molecular and Cellular Biology and Radiology. Lester and Sue Smith Breast Center. Dan L Duncan Comprehensive Cancer Center. Baylor College of Medicine, Houston, Texas, USA
| | - Yi Qiao
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gabor T Marth
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Xu M, Zhu Z, Zhao Y, He K, Huang Q, Zhao Y. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1468-1479. [PMID: 38776197 DOI: 10.1109/tcbb.2024.3404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction.
Collapse
|
3
|
Mohammadzadeh-Vardin T, Ghareyazi A, Gharizadeh A, Abbasi K, Rabiee HR. DeepDRA: Drug repurposing using multi-omics data integration with autoencoders. PLoS One 2024; 19:e0307649. [PMID: 39058696 PMCID: PMC11280260 DOI: 10.1371/journal.pone.0307649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has become one of the biggest challenges in the world today. Different treatments are used against cancer; drug-based treatments have shown better results. On the other hand, designing new drugs for cancer is costly and time-consuming. Some computational methods, such as machine learning and deep learning, have been suggested to solve these challenges using drug repurposing. Despite the promise of classical machine-learning methods in repurposing cancer drugs and predicting responses, deep-learning methods performed better. This study aims to develop a deep-learning model that predicts cancer drug response based on multi-omics data, drug descriptors, and drug fingerprints and facilitates the repurposing of drugs based on those responses. To reduce multi-omics data's dimensionality, we use autoencoders. As a multi-task learning model, autoencoders are connected to MLPs. We extensively tested our model using three primary datasets: GDSC, CTRP, and CCLE to determine its efficacy. In multiple experiments, our model consistently outperforms existing state-of-the-art methods. Compared to state-of-the-art models, our model achieves an impressive AUPRC of 0.99. Furthermore, in a cross-dataset evaluation, where the model is trained on GDSC and tested on CCLE, it surpasses the performance of three previous works, achieving an AUPRC of 0.72. In conclusion, we presented a deep learning model that outperforms the current state-of-the-art regarding generalization. Using this model, we could assess drug responses and explore drug repurposing, leading to the discovery of novel cancer drugs. Our study highlights the potential for advanced deep learning to advance cancer therapeutic precision.
Collapse
Affiliation(s)
- Taha Mohammadzadeh-Vardin
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Amin Ghareyazi
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Ali Gharizadeh
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Karim Abbasi
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
- Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran
| | - Hamid R. Rabiee
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Abbasi M, Carvalho FG, Ribeiro B, Arrais JP. Predicting drug activity against cancer through genomic profiles and SMILES. Artif Intell Med 2024; 150:102820. [PMID: 38553160 DOI: 10.1016/j.artmed.2024.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Due to the constant increase in cancer rates, the disease has become a leading cause of death worldwide, enhancing the need for its detection and treatment. In the era of personalized medicine, the main goal is to incorporate individual variability in order to choose more precisely which therapy and prevention strategies suit each person. However, predicting the sensitivity of tumors to anticancer treatments remains a challenge. In this work, we propose two deep neural network models to predict the impact of anticancer drugs in tumors through the half-maximal inhibitory concentration (IC50). These models join biological and chemical data to apprehend relevant features of the genetic profile and the drug compounds, respectively. In order to predict the drug response in cancer cell lines, this study employed different DL methods, resorting to Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). In the first stage, two autoencoders were pre-trained with high-dimensional gene expression and mutation data of tumors. Afterward, this genetic background is transferred to the prediction models that return the IC50 value that portrays the potency of a substance in inhibiting a cancer cell line. When comparing RSEM Expected counts and TPM as methods for displaying gene expression data, RSEM has been shown to perform better in deep models and CNNs model can obtain better insight in these types of data. Moreover, the obtained results reflect the effectiveness of the extracted deep representations in the prediction of the IC50 value that portrays the potency of a substance in inhibiting a tumor, achieving a performance of a mean squared error of 1.06 and surpassing previous state-of-the-art models.
Collapse
Affiliation(s)
- Maryam Abbasi
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, Portugal; Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra, Portugal.
| | - Filipa G Carvalho
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - Bernardete Ribeiro
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Lecca P, Lecca M. Graph embedding and geometric deep learning relevance to network biology and structural chemistry. Front Artif Intell 2023; 6:1256352. [PMID: 38035201 PMCID: PMC10687447 DOI: 10.3389/frai.2023.1256352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning.
Collapse
Affiliation(s)
- Paola Lecca
- Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Michela Lecca
- Fondazione Bruno Kessler, Digital Industry Center, Technologies of Vision, Trento, Italy
| |
Collapse
|
6
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 PMCID: PMC11554572 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
7
|
Zhao H, Zhang X, Zhao Q, Li Y, Wang J. MSDRP: a deep learning model based on multisource data for predicting drug response. Bioinformatics 2023; 39:btad514. [PMID: 37606993 PMCID: PMC10474952 DOI: 10.1093/bioinformatics/btad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
MOTIVATION Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell lines. RESULTS In this paper, we propose a deep learning framework, named MSDRP for drug response prediction. MSDRP uses an interaction module to capture interactions between drugs and cell lines, and integrates multiple associations/interactions between drugs and biological entities through similarity network fusion algorithms, outperforming some state-of-the-art models in all performance measures for all experiments. The experimental results of de novo test and independent test demonstrate the excellent performance of our model for new drugs. Furthermore, several case studies illustrate the rationality for using feature vectors derived from drug similarity matrices from multisource data to represent drugs and the interpretability of our model. AVAILABILITY AND IMPLEMENTATION The codes of MSDRP are available at https://github.com/xyzhang-10/MSDRP.
Collapse
Affiliation(s)
- Haochen Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Xiaoyu Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Qichang Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0001, United States
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Zhao H, Ni P, Zhao Q, Liang X, Ai D, Erhardt S, Wang J, Li Y, Wang J. Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework. Commun Biol 2023; 6:870. [PMID: 37620651 PMCID: PMC10449791 DOI: 10.1038/s42003-023-05243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the seriousness of clinical outcomes of adverse reactions to drugs. GCAP has two tasks: one is to predict whether adverse reactions to drugs cause serious clinical outcomes, and the other is to infer the corresponding classes of serious clinical outcomes. Experimental results demonstrate that our method is a powerful and robust framework with high extendibility. GCAP can serve as a useful tool to successfully address the challenge of predicting the seriousness of clinical outcomes stemming from adverse reactions to drugs.
Collapse
Affiliation(s)
- Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
- Xiangjiang Laboratory, Changsha, 410205, China
| | - Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Qichang Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Xiao Liang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Di Ai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, 23529-0001, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China.
- Xiangjiang Laboratory, Changsha, 410205, China.
| |
Collapse
|
9
|
Liu X, Zhang W. A subcomponent-guided deep learning method for interpretable cancer drug response prediction. PLoS Comput Biol 2023; 19:e1011382. [PMID: 37603576 PMCID: PMC10470940 DOI: 10.1371/journal.pcbi.1011382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.
Collapse
Affiliation(s)
- Xuan Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Partin A, Brettin T, Zhu Y, Dolezal JM, Kochanny S, Pearson AT, Shukla M, Evrard YA, Doroshow JH, Stevens RL. Data augmentation and multimodal learning for predicting drug response in patient-derived xenografts from gene expressions and histology images. Front Med (Lausanne) 2023; 10:1058919. [PMID: 36960342 PMCID: PMC10027779 DOI: 10.3389/fmed.2023.1058919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies. A primary challenge in modeling drug response prediction (DRP) with PDXs and neural networks (NNs) is the limited number of drug response samples. We investigate multimodal neural network (MM-Net) and data augmentation for DRP in PDXs. The MM-Net learns to predict response using drug descriptors, gene expressions (GE), and histology whole-slide images (WSIs). We explore whether combining WSIs with GE improves predictions as compared with models that use GE alone. We propose two data augmentation methods which allow us training multimodal and unimodal NNs without changing architectures with a single larger dataset: 1) combine single-drug and drug-pair treatments by homogenizing drug representations, and 2) augment drug-pairs which doubles the sample size of all drug-pair samples. Unimodal NNs which use GE are compared to assess the contribution of data augmentation. The NN that uses the original and the augmented drug-pair treatments as well as single-drug treatments outperforms NNs that ignore either the augmented drug-pairs or the single-drug treatments. In assessing the multimodal learning based on the MCC metric, MM-Net outperforms all the baselines. Our results show that data augmentation and integration of histology images with GE can improve prediction performance of drug response in PDXs.
Collapse
Affiliation(s)
- Alexander Partin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Thomas Brettin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Yitan Zhu
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - James M. Dolezal
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Sara Kochanny
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander T. Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Maulik Shukla
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - James H. Doroshow
- Division of Cancer Therapeutics and Diagnosis, National Cancer Institute, Bethesda, MD, United States
| | - Rick L. Stevens
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
- Department of Computer Science, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A, Overbeek J, Stevens RL. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Front Med (Lausanne) 2023; 10:1086097. [PMID: 36873878 PMCID: PMC9975164 DOI: 10.3389/fmed.2023.1086097] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans, ultimately suppressing tumors, alleviating suffering, and prolonging lives of patients. A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods. These papers investigate diverse data representations, neural network architectures, learning methodologies, and evaluations schemes. However, deciphering promising predominant and emerging trends is difficult due to the variety of explored methods and lack of standardized framework for comparing drug response prediction models. To obtain a comprehensive landscape of deep learning methods, we conducted an extensive search and analysis of deep learning models that predict the response to single drug treatments. A total of 61 deep learning-based models have been curated, and summary plots were generated. Based on the analysis, observable patterns and prevalence of methods have been revealed. This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
Collapse
Affiliation(s)
- Alexander Partin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Thomas S. Brettin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Yitan Zhu
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Oleksandr Narykov
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Austin Clyde
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Jamie Overbeek
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Rick L. Stevens
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
- Department of Computer Science, The University of Chicago, Chicago, IL, United States
| |
Collapse
|