1
|
Schmidt H, Raphael BJ. A regression based approach to phylogenetic reconstruction from multi-sample bulk DNA sequencing of tumors. PLoS Comput Biol 2024; 20:e1012631. [PMID: 39630782 DOI: 10.1371/journal.pcbi.1012631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
MOTIVATION DNA sequencing of multiple bulk samples from a tumor provides the opportunity to investigate tumor heterogeneity and reconstruct a phylogeny of a patient's cancer. However, since bulk DNA sequencing of tumor tissue measures thousands of cells from a heterogeneous mixture of distinct sub-populations, accurate reconstruction of the tumor phylogeny requires simultaneous deconvolution of cancer clones and inference of ancestral relationships, leading to a challenging computational problem. Many existing methods for phylogenetic reconstruction from bulk sequencing data do not scale to large datasets, such as recent datasets containing upwards of ninety samples with dozens of distinct sub-populations. RESULTS We develop an approach to reconstruct phylogenetic trees from multi-sample bulk DNA sequencing data by separating the reconstruction problem into two parts: a structured regression problem for a fixed tree [Formula: see text], and an optimization over tree space. We derive an algorithm for the regression sub-problem by exploiting the unique, combinatorial structure of the matrices appearing within the problem. This algorithm has both asymptotic and empirical improvements over linear programming (LP) approaches to the problem. Using our algorithm for this regression sub-problem, we develop fastBE, a simple method for phylogenetic inference from multi-sample bulk DNA sequencing data. We demonstrate on simulated data with hundreds of samples and upwards of a thousand distinct sub-populations that fastBE outperforms existing approaches in terms of reconstruction accuracy, sample efficiency, and runtime. Owing to its scalability, fastBE enables both phylogenetic reconstruction directly from indvidual mutations without requiring the clustering of mutations into clones, as well as a new phylogeny constrained mutation clustering algorithm. On real data from fourteen B-progenitor acute lymphoblastic leukemia patients, fastBE infers mutation phylogenies with fewer violations of a widely used evolutionary constraint and better agreement to the observed mutational frequencies. Using our phylogeny constrained mutation clustering algorithm, we also find mutation clusters with lower distortion compared to state-of-the-art approaches. Finally, we show that on two patient-derived colorectal cancer models, fastBE infers mutation phylogenies with less violation of a widely used evolutionary constraint compared to existing methods.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, New Jersey, United States of America
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, New Jersey, United States of America
| |
Collapse
|
2
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
4
|
Luo XG, Kuipers J, Beerenwinkel N. Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation trees. Nat Commun 2023; 14:3676. [PMID: 37344522 DOI: 10.1038/s41467-023-39400-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer progression is an evolutionary process shaped by both deterministic and stochastic forces. Multi-region and single-cell sequencing of tumors enable high-resolution reconstruction of the mutational history of each tumor and highlight the extensive diversity across tumors and patients. Resolving the interactions among mutations and recovering recurrent evolutionary processes may offer greater opportunities for successful therapeutic strategies. To this end, we present a novel probabilistic framework, called TreeMHN, for the joint inference of exclusivity patterns and recurrent trajectories from a cohort of intra-tumor phylogenetic trees. Through simulations, we show that TreeMHN outperforms existing alternatives that can only focus on one aspect of the task. By analyzing datasets of blood, lung, and breast cancers, we find the most likely evolutionary trajectories and mutational patterns, consistent with and enriching our current understanding of tumorigenesis. Moreover, TreeMHN facilitates the prediction of tumor evolution and provides probabilistic measures on the next mutational events given a tumor tree, a prerequisite for evolution-guided treatment strategies.
Collapse
Affiliation(s)
- Xiang Ge Luo
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
5
|
Lee ND, Kaveh K, Bozic I. Clonal interactions in cancer: integrating quantitative models with experimental and clinical data. Semin Cancer Biol 2023; 92:61-73. [PMID: 37023969 DOI: 10.1016/j.semcancer.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Tumors consist of different genotypically distinct subpopulations-or subclones-of cells. These subclones can influence neighboring clones in a process called "clonal interaction." Conventionally, research on driver mutations in cancer has focused on their cell-autonomous effects that lead to an increase in fitness of the cells containing the driver. Recently, with the advent of improved experimental and computational technologies for investigating tumor heterogeneity and clonal dynamics, new studies have shown the importance of clonal interactions in cancer initiation, progression, and metastasis. In this review we provide an overview of clonal interactions in cancer, discussing key discoveries from a diverse range of approaches to cancer biology research. We discuss common types of clonal interactions, such as cooperation and competition, its mechanisms, and the overall effect on tumorigenesis, with important implications for tumor heterogeneity, resistance to treatment, and tumor suppression. Quantitative models-in coordination with cell culture and animal model experiments-have played a vital role in investigating the nature of clonal interactions and the complex clonal dynamics they generate. We present mathematical and computational models that can be used to represent clonal interactions and provide examples of the roles they have played in identifying and quantifying the strength of clonal interactions in experimental systems. Clonal interactions have proved difficult to observe in clinical data; however, several very recent quantitative approaches enable their detection. We conclude by discussing ways in which researchers can further integrate quantitative methods with experimental and clinical data to elucidate the critical-and often surprising-roles of clonal interactions in human cancers.
Collapse
Affiliation(s)
- Nathan D Lee
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America; Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America.
| |
Collapse
|