1
|
Aubin RG, Montelongo J, Hu R, Gunther E, Nicodemus P, Camara PG. Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527318. [PMID: 36798206 PMCID: PMC9934539 DOI: 10.1101/2023.02.06.527318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Single-cell RNA-sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes like cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities such as bulk ATAC-seq data.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Robert Hu
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Elijah Gunther
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Patrick Nicodemus
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
2
|
Ruan X, Cheng Y, Ye Y, Wang Y, Chen X, Yang Y, Liu T, Yan F. PIPET: predicting relevant subpopulations in single-cell data using phenotypic information from bulk data. Brief Bioinform 2024; 25:bbae260. [PMID: 38819254 PMCID: PMC11141296 DOI: 10.1093/bib/bbae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Single-cell RNA sequencing has revealed cellular heterogeneity in complex tissues, notably benefiting research on diseases such as cancer. However, the integration of single-cell data from small samples with extensive clinical features in bulk data remains underexplored. In this study, we introduce PIPET, an algorithmic method for predicting relevant subpopulations in single-cell data based on multivariate phenotypic information from bulk data. PIPET generates feature vectors for each phenotype from differentially expressed genes in bulk data and then identifies relevant cellular subpopulations by assessing the similarity between single-cell data and these vectors. Subsequently, phenotype-related cell states can be analyzed based on these subpopulations. In simulated datasets, PIPET showed robust performance in predicting multiclassification cellular subpopulations. Application of PIPET to lung adenocarcinoma single-cell RNA sequencing data revealed cellular subpopulations with poor survival and associations with TP53 mutations. Similarly, in breast cancer single-cell data, PIPET identified cellular subpopulations associated with the PAM50 clinical subtypes and triple-negative breast cancer subtypes. Overall, PIPET effectively identified relevant cellular subpopulations in single-cell data, guided by phenotypic information from bulk data. This approach comprehensively delineates the molecular characteristics of each cellular subpopulation, offering insights into disease-related subpopulations and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Xinjia Ruan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yu Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yuqing Ye
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yuhang Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xinyi Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yuqing Yang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Tiantian Liu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| |
Collapse
|
3
|
Vathrakokoili Pournara A, Miao Z, Beker OY, Nolte N, Brazma A, Papatheodorou I. CATD: a reproducible pipeline for selecting cell-type deconvolution methods across tissues. BIOINFORMATICS ADVANCES 2024; 4:vbae048. [PMID: 38638280 PMCID: PMC11023940 DOI: 10.1093/bioadv/vbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Motivation Cell-type deconvolution methods aim to infer cell composition from bulk transcriptomic data. The proliferation of developed methods coupled with inconsistent results obtained in many cases, highlights the pressing need for guidance in the selection of appropriate methods. Additionally, the growing accessibility of single-cell RNA sequencing datasets, often accompanied by bulk expression from related samples enable the benchmark of existing methods. Results In this study, we conduct a comprehensive assessment of 31 methods, utilizing single-cell RNA-sequencing data from diverse human and mouse tissues. Employing various simulation scenarios, we reveal the efficacy of regression-based deconvolution methods, highlighting their sensitivity to reference choices. We investigate the impact of bulk-reference differences, incorporating variables such as sample, study and technology. We provide validation using a gold standard dataset from mononuclear cells and suggest a consensus prediction of proportions when ground truth is not available. We validated the consensus method on data from the stomach and studied its spillover effect. Importantly, we propose the use of the critical assessment of transcriptomic deconvolution (CATD) pipeline which encompasses functionalities for generating references and pseudo-bulks and running implemented deconvolution methods. CATD streamlines simultaneous deconvolution of numerous bulk samples, providing a practical solution for speeding up the evaluation of newly developed methods. Availability and implementation https://github.com/Papatheodorou-Group/CATD_snakemake.
Collapse
Affiliation(s)
- Anna Vathrakokoili Pournara
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ozgur Yilimaz Beker
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Turkey
| | - Nadja Nolte
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 121-1000, Slovenia
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| |
Collapse
|
4
|
Merotto L, Sturm G, Dietrich A, List M, Finotello F. Making mouse transcriptomics deconvolution accessible with immunedeconv. BIOINFORMATICS ADVANCES 2024; 4:vbae032. [PMID: 38464974 PMCID: PMC10924280 DOI: 10.1093/bioadv/vbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Summary Transcriptome deconvolution has emerged as a reliable technique to estimate cell-type abundances from bulk RNA sequencing data. Unlike their human equivalents, methods to quantify the cellular composition of complex tissues from murine transcriptomics are sparse and sometimes not easy to use. We extended the immunedeconv R package to facilitate the deconvolution of mouse transcriptomics, enabling the quantification of murine immune-cell types using 13 different methods. Through immunedeconv, we further offer the possibility of tweaking cell signatures used by deconvolution methods, providing custom annotations tailored for specific cell types and tissues. These developments strongly facilitate the study of the immune-cell composition of mouse models and further open new avenues in the investigation of the cellular composition of other tissues and organisms. Availability and implementation The R package and the documentation are available at https://github.com/omnideconv/immunedeconv.
Collapse
Affiliation(s)
- Lorenzo Merotto
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck 6020, Austria
- Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach 88400, Germany
| | - Alexander Dietrich
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
5
|
Kreis J, Aybey B, Geist F, Brors B, Staub E. Stromal Signals Dominate Gene Expression Signature Scores That Aim to Describe Cancer Cell-intrinsic Stemness or Mesenchymality Characteristics. CANCER RESEARCH COMMUNICATIONS 2024; 4:516-529. [PMID: 38349551 PMCID: PMC10885853 DOI: 10.1158/2767-9764.crc-23-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) in cancer cells confers migratory abilities, a crucial aspect in the metastasis of tumors that frequently leads to death. In multiple studies, authors proposed gene expression signatures for EMT, stemness, or mesenchymality of tumors based on bulk tumor expression profiling. However, recent studies suggested that noncancerous cells from the microenvironment or macroenvironment heavily influence such signature profiles. Here, we strengthen these findings by investigating 11 published and frequently referenced gene expression signatures that were proposed to describe EMT-related (EMT, mesenchymal, or stemness) characteristics in various cancer types. By analyses of bulk, single-cell, and pseudobulk expression data, we show that the cell type composition of a tumor sample frequently dominates scores of these EMT-related signatures. A comprehensive, integrated analysis of bulk RNA sequencing (RNA-seq) and single-cell RNA-seq data shows that stromal cells, most often fibroblasts, are the main drivers of EMT-related signature scores. We call attention to the risk of false conclusions about tumor properties when interpreting EMT-related signatures, especially in a clinical setting: high patient scores of EMT-related signatures or calls of "stemness subtypes" often result from low cancer cell content in tumor biopsies rather than cancer cell-specific stemness or mesenchymal/EMT characteristics. SIGNIFICANCE Cancer self-renewal and migratory abilities are often characterized via gene module expression profiles, also called EMT or stemness gene expression signatures. Using published clinical tumor samples, cancer cell lines, and single cancer cells, we highlight the dominating influence of noncancer cells in low cancer cell content biopsies on their scores. We caution on their application for low cancer cell content clinical cancer samples with the intent to assign such characteristics or subtypes.
Collapse
Affiliation(s)
- Julian Kreis
- The healthcare business of Merck KGaA, Darmstadt, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bogac Aybey
- The healthcare business of Merck KGaA, Darmstadt, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Felix Geist
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
- Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eike Staub
- The healthcare business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
6
|
Maden SK, Kwon SH, Huuki-Myers LA, Collado-Torres L, Hicks SC, Maynard KR. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets. Genome Biol 2023; 24:288. [PMID: 38098055 PMCID: PMC10722720 DOI: 10.1186/s13059-023-03123-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Deconvolution of cell mixtures in "bulk" transcriptomic samples from homogenate human tissue is important for understanding disease pathologies. However, several experimental and computational challenges impede transcriptomics-based deconvolution approaches using single-cell/nucleus RNA-seq reference atlases. Cells from the brain and blood have substantially different sizes, total mRNA, and transcriptional activities, and existing approaches may quantify total mRNA instead of cell type proportions. Further, standards are lacking for the use of cell reference atlases and integrative analyses of single-cell and spatial transcriptomics data. We discuss how to approach these key challenges with orthogonal "gold standard" datasets for evaluating deconvolution methods.
Collapse
Affiliation(s)
- Sean K Maden
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Hippen AA, Omran DK, Weber LM, Jung E, Drapkin R, Doherty JA, Hicks SC, Greene CS. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors. Genome Biol 2023; 24:239. [PMID: 37864274 PMCID: PMC10588129 DOI: 10.1186/s13059-023-03077-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Single-cell gene expression profiling provides unique opportunities to understand tumor heterogeneity and the tumor microenvironment. Because of cost and feasibility, profiling bulk tumors remains the primary population-scale analytical strategy. Many algorithms can deconvolve these tumors using single-cell profiles to infer their composition. While experimental choices do not change the true underlying composition of the tumor, they can affect the measurements produced by the assay. RESULTS We generated a dataset of high-grade serous ovarian tumors with paired expression profiles from using multiple strategies to examine the extent to which experimental factors impact the results of downstream tumor deconvolution methods. We find that pooling samples for single-cell sequencing and subsequent demultiplexing has a minimal effect. We identify dissociation-induced differences that affect cell composition, leading to changes that may compromise the assumptions underlying some deconvolution algorithms. We also observe differences across mRNA enrichment methods that introduce additional discrepancies between the two data types. We also find that experimental factors change cell composition estimates and that the impact differs by method. CONCLUSIONS Previous benchmarks of deconvolution methods have largely ignored experimental factors. We find that methods vary in their robustness to experimental factors. We provide recommendations for methods developers seeking to produce the next generation of deconvolution approaches and for scientists designing experiments using deconvolution to study tumor heterogeneity.
Collapse
Affiliation(s)
- Ariel A Hippen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dalia K Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Villemin JP, Bassaganyas L, Pourquier D, Boissière F, Cabello-Aguilar S, Crapez E, Tanos R, Cornillot E, Turtoi A, Colinge J. Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR. Nucleic Acids Res 2023:7152875. [PMID: 37144485 DOI: 10.1093/nar/gkad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/24/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023] Open
Abstract
The study of cellular networks mediated by ligand-receptor interactions has attracted much attention recently owing to single-cell omics. However, rich collections of bulk data accompanied with clinical information exists and continue to be generated with no equivalent in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary tool in biology. A large number of ST projects rely on multicellular resolution, for instance the Visium™ platform, where several cells are analyzed at each location, thus producing localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor networks from bulk data. BulkSignalR integrates ligand-receptor interactions with downstream pathways to estimate statistical significance. A range of visualization methods complement the statistics, including functions dedicated to spatial data. We demonstrate BulkSignalR relevance using different datasets, including new Visium liver metastasis ST data, with experimental validation of protein colocalization. A comparison with other ST packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can be applied to any species thanks to its built-in generic ortholog mapping functionality.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Laia Bassaganyas
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Didier Pourquier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | | | - Simon Cabello-Aguilar
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Evelyne Crapez
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Rita Tanos
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
- Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U 1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer Montpellier (ICM), Montpellier, France
- Faculté de Médecine, Université de Montpellier, Montpellier, France
| |
Collapse
|