1
|
Scheffer L, Reber EE, Mehta BB, Pavlović M, Chernigovskaya M, Richardson E, Akbar R, Lund-Johansen F, Greiff V, Haff IH, Sandve GK. Predictability of antigen binding based on short motifs in the antibody CDRH3. Brief Bioinform 2024; 25:bbae537. [PMID: 39438077 PMCID: PMC11495870 DOI: 10.1093/bib/bbae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Adaptive immune receptors, such as antibodies and T-cell receptors, recognize foreign threats with exquisite specificity. A major challenge in adaptive immunology is discovering the rules governing immune receptor-antigen binding in order to predict the antigen binding status of previously unseen immune receptors. Many studies assume that the antigen binding status of an immune receptor may be determined by the presence of a short motif in the complementarity determining region 3 (CDR3), disregarding other amino acids. To test this assumption, we present a method to discover short motifs which show high precision in predicting antigen binding and generalize well to unseen simulated and experimental data. Our analysis of a mutagenesis-based antibody dataset reveals 11 336 position-specific, mostly gapped motifs of 3-5 amino acids that retain high precision on independently generated experimental data. Using a subset of only 178 motifs, a simple classifier was made that on the independently generated dataset outperformed a deep learning model proposed specifically for such datasets. In conclusion, our findings support the notion that for some antibodies, antigen binding may be largely determined by a short CDR3 motif. As more experimental data emerge, our methodology could serve as a foundation for in-depth investigations into antigen binding signals.
Collapse
Affiliation(s)
- Lonneke Scheffer
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Eric Emanuel Reber
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Eve Richardson
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, United States
| | - Rahmad Akbar
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Ingrid Hobæk Haff
- Department of Mathematics, University of Oslo, Niels Henrik Abels hus, Moltke Moes vei 35, 0851 Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| |
Collapse
|
2
|
Gabernet G, Marquez S, Bjornson R, Peltzer A, Meng H, Aron E, Lee NY, Jensen CG, Ladd D, Polster M, Hanssen F, Heumos S, Yaari G, Kowarik MC, Nahnsen S, Kleinstein SH. nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework. PLoS Comput Biol 2024; 20:e1012265. [PMID: 39058741 PMCID: PMC11305553 DOI: 10.1371/journal.pcbi.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets.
Collapse
Affiliation(s)
- Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Bjornson
- Yale Center for Research Computing, New Haven, Connecticut, United States of America
| | | | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Edel Aron
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Noah Y. Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - David Ladd
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Polster
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Friederike Hanssen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | | | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Leighton PA, Ching K, Reynolds K, Vuong CN, Zeng B, Zhang Y, Gupta A, Morales J, Rivera GS, Srivastava DB, Cotter R, Pedersen D, Collarini E, Izquierdo S, van de Lavoir MC, Harriman W. Chickens with a Truncated Light Chain Transgene Express Single-Domain H Chain-Only Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1744-1753. [PMID: 38629917 PMCID: PMC11102025 DOI: 10.4049/jimmunol.2300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system. The majority of vertebrates use the standard heterodimeric (both H and L chains) structure and do not produce sdAb format Igs. To investigate if other animals are able to support sdAb development and function, transgenic chickens (Gallus gallus) were designed to produce H chain-only Abs by omitting the L chain V region and maintaining only the LC region to serve as a chaperone for Ab secretion from the cell. These birds produced 30-50% normal B cell populations within PBMCs and readily expressed chicken sequence sdAbs. Interestingly, the H chains contained a spontaneous CH1 deletion. Although no isotype switching to IgY or IgA occurred, the IgM repertoire was diverse, and immunization with a variety of protein immunogens rapidly produced high and specific serum titers. mAbs of high affinity were efficiently recovered by single B cell screening. In in vitro functional assays, the sdAbs produced by birds immunized against SARS-CoV-2 were also able to strongly neutralize and prevent viral replication. These data suggest that the truncated L chain design successfully supported sdAb development and expression in chickens.
Collapse
|
4
|
Truong D, Changey F, Rondags E, Framboisier X, Etienne M, Guedon E. Evaluation of short-circuited electrodes in combination with dark fermentation for promoting biohydrogen production process. Bioelectrochemistry 2024; 157:108631. [PMID: 38199186 DOI: 10.1016/j.bioelechem.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Short-circuited electrodes, in combination with dark fermentation, were evaluated in a biohydrogen production process. The system is based on an innovative design of a non-compartmented electromicrobial bioreactor with a conductive tubular membrane as cathode and a graphite felt as anode. In particular, the electrode specialization occurred when the bioreactor was inoculated with manure as the whole medium and when a vacuum was applied in the tubular membrane, for allowing continuous extraction of gaseous species (H2, CH4, CO2) from the bioreactor. This specialization of the electrodes as anode and cathode was further confirmed by microbial ecology analysis of biofilms and by cyclic voltammetry measurements. In these experimental conditions, the potential of the electrochemical system (short-circuited electrodes) reached values as low as -320 mV vs. SHE, associated with a significant bioH2 production. Moreover, a higher bioH2 production occurred and a potential of the electrochemical system as low as -429 mV vs SHE was temporarily observed, when additional heat treatments of the whole manure were applied in order to remove methanogen microorganisms (i.e., hydrogen consumers). In the bioreactor, the higher production of bioH2 would be promoted by electrofermentation from the current flow observed between short-circuited anode and cathode.
Collapse
Affiliation(s)
- Delphine Truong
- Université de Lorraine, CNRS, LRGP, 54000 Nancy, France; Université de Lorraine, CNRS, LCPME, 54000 Nancy, France
| | | | | | | | | | | |
Collapse
|
5
|
Mhanna V, Barennes P, Vantomme H, Fourcade G, Coatnoan N, Six A, Klatzmann D, Mariotti-Ferrandiz E. Enhancing comparative T cell receptor repertoire analysis in small biological samples through pooling homologous cell samples from multiple mice. CELL REPORTS METHODS 2024; 4:100753. [PMID: 38614088 PMCID: PMC11045977 DOI: 10.1016/j.crmeth.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Accurate characterization and comparison of T cell receptor (TCR) repertoires from small biological samples present significant challenges. The main challenge is the low material input, which compromises the quality of bulk sequencing and hinders the recovery of sufficient TCR sequences for robust analyses. We aimed to address this limitation by implementing a strategic approach to pool homologous biological samples. Our findings demonstrate that such pooling indeed enhances the TCR repertoire coverage, particularly for cell subsets of constrained sizes, and enables accurate comparisons of TCR repertoires at different levels of complexity across T cell subsets with different sizes. This methodology holds promise for advancing our understanding of T cell repertoires in scenarios where sample size constraints are a prevailing concern.
Collapse
Affiliation(s)
- Vanessa Mhanna
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Hélène Vantomme
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Gwladys Fourcade
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France
| | - Nicolas Coatnoan
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Adrien Six
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75005 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
6
|
Ravishankar S, Towlerton AM, Mooka P, Kafeero J, Coffey DG, Aicher LD, Mubiru KR, Okoche L, Atwinirembabazi P, Okonye J, Phipps WT, Warren EH. The signature of a T-cell response to KSHV persists across space and time in individuals with epidemic and endemic KS from Uganda. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579223. [PMID: 38370623 PMCID: PMC10871354 DOI: 10.1101/2024.02.06.579223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Inadequate T-cell control of Kaposi sarcoma-associated herpesvirus (KSHV) infection predisposes to development of Kaposi sarcoma (KS), but little is known about the T-cell response to KSHV. Postulating that KS tumors contain abundant KSHV-specific T-cells, we performed transcriptional profiling and T-cell receptor (TCR) repertoire analysis of tumor biopsies from 144 Ugandan adults with KS. We show that CD8+ T-cells and M2-polarized macrophages dominate the tumor micro-environment (TME). The TCR repertoire of KS tumor infiltrating lymphocytes (TIL) is shared across non-contiguous tumors and persists across time. Clusters of T-cells with predicted shared specificity for uncharacterized antigens, potentially encoded by KSHV, comprise ~25% of KS TIL, and are shared across tumors from different time points and individuals. Single-cell RNA-sequencing of blood identifies a non-proliferating effector memory phenotype and captured the TCRs in 14,698 putative KSHV-specific T-cells. These results suggest that a polyspecific KSHV-specific T-cell response inhibited by M2 macrophages exists within the KS TME, and provide a foundation for studies to define its specificity at a large scale.
Collapse
Affiliation(s)
- Shashidhar Ravishankar
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrea M.H. Towlerton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Peter Mooka
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - James Kafeero
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - David G. Coffey
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Lauri D. Aicher
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | | | - Lazarus Okoche
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | | | - Joseph Okonye
- Hutchinson Centre Research Institute – Uganda, Kampala, Uganda
| | - Warren T. Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Arvidsson G, Czarnewski P, Johansson A, Raine A, Imgenberg-Kreuz J, Nordlund J, Nordmark G, Syvänen AC. Multimodal Single-Cell Sequencing of B Cells in Primary Sjögren's Syndrome. Arthritis Rheumatol 2024; 76:255-267. [PMID: 37610265 DOI: 10.1002/art.42683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE B cells are important in the pathogenesis of primary Sjögren's syndrome (pSS). Patients positive for Sjögren's syndrome antigen A/Sjögren syndrome antigen B (SSA/SSB) autoantibodies are more prone to systemic disease manifestations and adverse outcomes. We aimed to determine the role of B cell composition, gene expression, and B cell receptor usage in pSS subgroups stratified for SSA/SSB antibodies. METHODS Over 230,000 B cells were isolated from peripheral blood of patients with pSS (n = 6 SSA-, n = 8 SSA+ single positive and n = 10 SSA/SSB+ double positive) and four healthy controls and processed for single-cell RNA sequencing (scRNA-seq) and single-cell variable, diversity, and joining (VDJ) gene sequencing (scVDJ-seq). RESULTS We show that SSA/SSB+ patients present the highest and lowest proportion of naïve and memory B cells, respectively, and the highest up-regulation of interferon-induced genes across all B cell subtypes. Differential usage of IGHV showed that IGHV1-69 and IGHV4-30-4 were more often used in all pSS subgroups compared with controls. Memory B cells from SSA/SSB+ patients displayed a higher proportion of cells with unmutated VDJ transcripts compared with other pSS patient groups and controls, indicating altered somatic hypermutation processes. Comparison with previous studies revealed heterogeneous clonotype pools, with little overlap in CDR3 sequences. Joint analysis using scRNA-seq and scVDJ-seq data allowed unsupervised stratification of patients with pSS and identified novel parameters that correlated to disease manifestations and antibody status. CONCLUSION We describe heterogeneity and molecular characteristics in B cells from patients with pSS, providing clues to intrinsic differences in B cells that affect the phenotype and outcome and allowing stratification of patients with pSS at improved resolution.
Collapse
|
8
|
Sidiropoulos DN, Ho WJ, Jaffee EM, Kagohara LT, Fertig EJ. Systems immunology spanning tumors, lymph nodes, and periphery. CELL REPORTS METHODS 2023; 3:100670. [PMID: 38086385 PMCID: PMC10753389 DOI: 10.1016/j.crmeth.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.
Collapse
Affiliation(s)
- Dimitrios N Sidiropoulos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA.
| | - Elana J Fertig
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Olsen TH, Abanades B, Moal IH, Deane CM. KA-Search, a method for rapid and exhaustive sequence identity search of known antibodies. Sci Rep 2023; 13:11612. [PMID: 37463925 DOI: 10.1038/s41598-023-38108-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the [Formula: see text]2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch .
Collapse
Affiliation(s)
- Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Brennan Abanades
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Iain H Moal
- GSK Medicines Research Centre, GlaxoSmithKline plc, Stevenage, SG1 2NY, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
- Exscientia plc, Oxford, OX4 4GE, UK.
| |
Collapse
|
10
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
11
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
12
|
Weber CR, Rubio T, Wang L, Zhang W, Robert PA, Akbar R, Snapkov I, Wu J, Kuijjer ML, Tarazona S, Conesa A, Sandve GK, Liu X, Reddy ST, Greiff V. Reference-based comparison of adaptive immune receptor repertoires. CELL REPORTS METHODS 2022; 2:100269. [PMID: 36046619 PMCID: PMC9421535 DOI: 10.1016/j.crmeth.2022.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.
Collapse
Affiliation(s)
- Cédric R. Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Teresa Rubio
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Longlong Wang
- BGI-Shenzhen, Shenzhen, China
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Philippe A. Robert
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Igor Snapkov
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonia Tarazona
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|