1
|
Tanoli Z, Schulman A, Aittokallio T. Validation guidelines for drug-target prediction methods. Expert Opin Drug Discov 2024:1-15. [PMID: 39568436 DOI: 10.1080/17460441.2024.2430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Mapping the interactions between pharmaceutical compounds and their molecular targets is a fundamental aspect of drug discovery and repurposing. Drug-target interactions are important for elucidating mechanisms of action and optimizing drug efficacy and safety profiles. Several computational methods have been developed to systematically predict drug-target interactions. However, computational and experimental validation of the drug-target predictions greatly vary across the studies. AREAS COVERED Through a PubMed query, a corpus comprising 3,286 articles on drug-target interaction prediction published within the past decade was covered. Natural language processing was used for automated abstract classification to study the evolution of computational methods, validation strategies and performance assessment metrics in the 3,286 articles. Additionally, a manual analysis of 259 studies that performed experimental validation of computational predictions revealed prevalent experimental protocols. EXPERT OPINION Starting from 2014, there has been a noticeable increase in articles focusing on drug-target interaction prediction. Docking and regression stands out as the most commonly used techniques among computational methods, and cross-validation is frequently employed as the computational validation strategy. Testing the predictions using multiple, orthogonal validation strategies is recommended and should be reported for the specific target prediction applications. Experimental validation remains relatively rare and should be performed more routinely to evaluate biological relevance of predictions.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aron Schulman
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Mora JR, Marquez EA, Pérez-Pérez N, Contreras-Torres E, Perez-Castillo Y, Agüero-Chapin G, Martinez-Rios F, Marrero-Ponce Y, Barigye SJ. Rethinking the applicability domain analysis in QSAR models. J Comput Aided Mol Des 2024; 38:9. [PMID: 38351144 DOI: 10.1007/s10822-024-00550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Notwithstanding the wide adoption of the OECD principles (or best practices) for QSAR modeling, disparities between in silico predictions and experimental results are frequent, suggesting that model predictions are often too optimistic. Of these OECD principles, the applicability domain (AD) estimation has been recognized in several reports in the literature to be one of the most challenging, implying that the actual reliability measures of model predictions are often unreliable. Applying tree-based error analysis workflows on 5 QSAR models reported in the literature and available in the QsarDB repository, i.e., androgen receptor bioactivity (agonists, antagonists, and binders, respectively) and membrane permeability (highest membrane permeability and the intrinsic permeability), we demonstrate that predictions erroneously tagged as reliable (AD prediction errors) overwhelmingly correspond to instances in subspaces (cohorts) with the highest prediction error rates, highlighting the inhomogeneity of the AD space. In this sense, we call for more stringent AD analysis guidelines which require the incorporation of model error analysis schemes, to provide critical insight on the reliability of underlying AD algorithms. Additionally, any selected AD method should be rigorously validated to demonstrate its suitability for the model space over which it is applied. These steps will ultimately contribute to more accurate estimations of the reliability of model predictions. Finally, error analysis may also be useful in "rational" model refinement in that data expansion efforts and model retraining are focused on cohorts with the highest error rates.
Collapse
Affiliation(s)
- Jose R Mora
- Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC- USFQ), Diego de Robles y Vía Interoceánica, Quito, 170901, Ecuador
| | - Edgar A Marquez
- Grupo de Investigaciones en Química Y Biología, Departamento de Química Y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla, 081007, Colombia
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Cátedras Conacyt, Ensenada, Baja California, México
| | - Noel Pérez-Pérez
- Colegio de Ciencias e Ingenierías "El Politécnico", Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Ernesto Contreras-Torres
- Grupo de Medicina Molecular y Traslacional (MeM&T), Universidad San Francisco de Quito, Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av. Interoceánica Km 12 1/2 y Av. Florencia, 17, Quito, 1200-841, Ecuador
| | - Yunierkis Perez-Castillo
- Bio-Chemoinformatics Research Group, Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, 170504, Ecuador
| | - Guillermin Agüero-Chapin
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Porto, 4450-208, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169- 007, Portugal
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, CDMX, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México, 03920, México
| | - Yovani Marrero-Ponce
- Grupo de Medicina Molecular y Traslacional (MeM&T), Universidad San Francisco de Quito, Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av. Interoceánica Km 12 1/2 y Av. Florencia, 17, Quito, 1200-841, Ecuador
- Facultad de Ingeniería, Universidad Panamericana, CDMX, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México, 03920, México
- Computer-Aided Molecular "Biosilico" Discovery and Bioinformatics Research International Network (CAMD-BIR IN), Cumbayá, Quito, Ecuador
| | - Stephen J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.
| |
Collapse
|