1
|
Schmitt S, Safferling K, Westphal K, Hrabowski M, Müller U, Angel P, Wiechert L, Ehemann V, Müller B, Holland-Cunz S, Stichel D, Harder N, Rohr K, Germann G, Matthäus F, Schirmacher P, Grabe N, Breuhahn K. Stathmin regulates keratinocyte proliferation and migration during cutaneous regeneration. PLoS One 2013; 8:e75075. [PMID: 24066165 PMCID: PMC3774809 DOI: 10.1371/journal.pone.0075075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/10/2013] [Indexed: 02/01/2023] Open
Abstract
Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF) affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration.
Collapse
Affiliation(s)
- Sabrina Schmitt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Safferling
- Institute of Medical Biometry and Informatics, Section Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathi Westphal
- Institute of Medical Biometry and Informatics, Section Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Hrabowski
- BG-Trauma Center, Ludwigshafen, Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ute Müller
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, Heidelberg, Germany
| | - Lars Wiechert
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, Heidelberg, Germany
| | - Volker Ehemann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benedikt Müller
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Holland-Cunz
- Division of Pediatric Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Damian Stichel
- Center for Modeling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Heidelberg, Germany
| | - Nathalie Harder
- Biomedical Computer Vision Group (BMCV), BIOQUANT and IPMB, University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group (BMCV), BIOQUANT and IPMB, University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Günter Germann
- BG-Trauma Center, Ludwigshafen, Department of Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Franziska Matthäus
- Center for Modeling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Institute of Medical Biometry and Informatics, Section Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
2
|
Domínguez-Hüttinger E, Ono M, Barahona M, Tanaka RJ. Risk factor-dependent dynamics of atopic dermatitis: modelling multi-scale regulation of epithelium homeostasis. Interface Focus 2013; 3:20120090. [PMID: 23853706 PMCID: PMC3638487 DOI: 10.1098/rsfs.2012.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epithelial tissue provides the body with its first layer of protection against harmful environmental stimuli by enacting the regulatory interplay between a physical barrier preventing the influx of external stimuli and an inflammatory response to the infiltrating stimuli. Importantly, this interdependent regulation occurs on different time scales: the tissue-level barrier permeability is regulated over the course of hours, whereas the cellular-level enzymatic reactions leading to inflammation take place within minutes. This multi-scale regulation is key to the epithelium's function and its dysfunction leads to various diseases. This paper presents a mathematical model of regulatory mechanisms in the epidermal epithelium that includes processes on two different time scales at the cellular and tissue levels. We use this model to investigate the essential regulatory interactions between epidermal barrier integrity and skin inflammation and how their dysfunction leads to atopic dermatitis (AD). Our model exhibits a structure of dual (positive and negative) control at both cellular and tissue levels. We also determined how the variation induced by well-known risk factors for AD can break the balance of the dual control. Our model analysis based on time-scale separation suggests that each risk factor leads to qualitatively different dynamic behaviours of different severity for AD, and that the coincidence of multiple risk factors dramatically increases the fragility of the epithelium's function. The proposed mathematical framework should also be applicable to other inflammatory diseases that have similar time-scale separation and control architectures.
Collapse
|
3
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|