1
|
Andlovic B, Valenti D, Centorrino F, Picarazzi F, Hristeva S, Hiltmann M, Wolf A, Cantrelle FX, Mori M, Landrieu I, Levy LM, Klebl B, Tzalis D, Genski T, Eickhoff J, Ottmann C. Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction. Biochemistry 2024; 63:2196-2206. [PMID: 39172504 PMCID: PMC11375770 DOI: 10.1021/acs.biochem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The identification of chemical starting points for the development of molecular glues is challenging. Here, we employed fragment screening and identified an allosteric stabilizer of the complex between 14-3-3 and a TAZ-derived peptide. The fragment binds preferentially to the 14-3-3/TAZ peptide complex and shows moderate stabilization in differential scanning fluorimetry and microscale thermophoresis. The binding site of the fragment was predicted by molecular dynamics calculations to be distant from the 14-3-3/TAZ peptide interface, located between helices 8 and 9 of the 14-3-3 protein. This site was confirmed by nuclear magnetic resonance and X-ray protein crystallography, revealing the first example of an allosteric stabilizer for 14-3-3 protein-protein interactions.
Collapse
Affiliation(s)
- Blaž Andlovic
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Francesca Picarazzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stanimira Hristeva
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | | | - Alexander Wolf
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - François-Xavier Cantrelle
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Isabelle Landrieu
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Laura M. Levy
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Dimitrios Tzalis
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
2
|
Wu T, Gale‐Day ZJ, Gestwicki JE. DSFworld: A flexible and precise tool to analyze differential scanning fluorimetry data. Protein Sci 2024; 33:e5022. [PMID: 38747440 PMCID: PMC11095082 DOI: 10.1002/pro.5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
Differential scanning fluorimetry (DSF) is a method to determine the apparent melting temperature (Tma) of a purified protein. In DSF, the raw unfolding curves from which Tma is calculated vary widely in shape and complexity. However, the tools available for calculating Tma are only compatible with the simplest of DSF curves, hindering many otherwise straightforward applications of the technology. To overcome this limitation, we designed new mathematical models for Tma calculation that accommodate common forms of variation in DSF curves, including the number of transitions, the presence of high initial signal, and temperature-dependent signal decay. When tested these models against DSFbase, an open-source database of 6235 raw, real-life DSF curves, these models outperformed the existing standard approaches of sigmoid fitting and maximum of the first derivative. To make these models accessible, we created an open-source software and website, DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting capabilities, DSFworld also includes features that overcome the practical limitations of many analysis workflows, including automatic reformatting of raw data exported from common qPCR instruments, labeling of data based on experimental variables, and flexible interactive plotting. We hope that DSFworld will enable more streamlined and accurate calculation of Tma values for DSF experiments.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zachary J. Gale‐Day
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Wu T, Hornsby M, Zhu L, Yu JC, Shokat KM, Gestwicki JE. Protocol for performing and optimizing differential scanning fluorimetry experiments. STAR Protoc 2023; 4:102688. [PMID: 37943662 PMCID: PMC10663957 DOI: 10.1016/j.xpro.2023.102688] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is a widely used technique for determining the apparent melting temperature (Tma) of a purified protein. Here, we present a protocol for performing and optimizing DSF experiments. We describe steps for designing and performing the experiment, analyzing data, and optimization. We provide benchmarks for typical Tmas and ΔTmas, standard assay conditions, and upper and lower limits of commonly altered experimental variables. We also detail common pitfalls of DSF and ways to avoid, identify, and overcome them.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Hornsby
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA
| | - Lawrence Zhu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Gedgaudas M, Baronas D, Kazlauskas E, Petrauskas V, Matulis D. Thermott: a comprehensive online tool for protein–ligand binding constant determination. Drug Discov Today 2022; 27:2076-2079. [DOI: 10.1016/j.drudis.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
|
5
|
Samuel ELG, Holmes SL, Young DW. Processing binding data using an open-source workflow. J Cheminform 2021; 13:99. [PMID: 34895330 PMCID: PMC8666039 DOI: 10.1186/s13321-021-00577-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The thermal shift assay (TSA)—also known as differential scanning fluorimetry (DSF), thermofluor, and Tm shift—is one of the most popular biophysical screening techniques used in fragment-based ligand discovery (FBLD) to detect protein–ligand interactions. By comparing the thermal stability of a target protein in the presence and absence of a ligand, potential binders can be identified. The technique is easy to set up, has low protein consumption, and can be run on most real-time polymerase chain reaction (PCR) instruments. While data analysis is straightforward in principle, it becomes cumbersome and time-consuming when the screens involve multiple 96- or 384-well plates. There are several approaches that aim to streamline this process, but most involve proprietary software, programming knowledge, or are designed for specific instrument output files. We therefore developed an analysis workflow implemented in the Konstanz Information Miner (KNIME), a free and open-source data analytics platform, which greatly streamlined our data processing timeline for 384-well plates. The implementation is code-free and freely available to the community for improvement and customization to accommodate a wide range of instrument input files and workflows. ![]()
Collapse
Affiliation(s)
- Errol L G Samuel
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Secondra L Holmes
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Martin-Malpartida P, Hausvik E, Underhaug J, Torner C, Martinez A, Macias MJ. HTSDSF Explorer, A Novel Tool to Analyze High-throughput DSF Screenings. J Mol Biol 2021; 434:167372. [DOI: 10.1016/j.jmb.2021.167372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
|
7
|
Tsai NC, Hsu TS, Kuo SC, Kao CT, Hung TH, Lin DG, Yeh CS, Chu CC, Lin JS, Lin HH, Ko CY, Chang TH, Su JC, Lin YCJ. Large-scale data analysis for robotic yeast one-hybrid platforms and multi-disciplinary studies using GateMultiplex. BMC Biol 2021; 19:214. [PMID: 34560855 PMCID: PMC8461970 DOI: 10.1186/s12915-021-01140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation. RESULTS We developed a new tool named GateMultiplex with high computing performance using C++. GateMultiplex incorporated a graphical user interface (GUI), which allows the operation without any programming skills. Flexible parameter options were designed for multiple experimental purposes to enable the application of GateMultiplex even beyond Y1H platforms. We further demonstrated the data analysis from other three fields using GateMultiplex, the identification of lead compounds in preclinical cancer drug discovery, the crop line selection in precision agriculture, and the ocean pollution detection from deep-sea fishery. CONCLUSIONS The user-friendly GUI, fast C++ computing speed, flexible parameter setting, and applicability of GateMultiplex facilitate the feasibility of large-scale data analysis in life science fields.
Collapse
Affiliation(s)
- Ni-Chiao Tsai
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Shu Hsu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shang-Che Kuo
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chung-Ting Kao
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Da-Gin Lin
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Chen Chu
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chia-Ying Ko
- Department of Life Sciences and Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Differential Effects of Oleuropein and Hydroxytyrosol on Aggregation and Stability of CFTR NBD1-ΔF508 Domain. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is caused by loss of function mutations in the Cystic Fibrosis transmembrane conductance regulator (CFTR). The folding and assembly of CFTR is inefficient. Deletion of F508 in the first nucleotide binding domain (NBD1-ΔF508) further disrupts protein stability leading to endoplasmic reticulum retention and proteasomal degradation. Stabilization and prevention of NBD1-ΔF508 aggregation is critical to rescuing the folding and function of the entire CFTR channel. We report that the phenolic compounds Oleuropein and Hydroxytryosol reduce aggregation of NBD1-ΔF508. The NBD1-ΔF508 aggregate size was smaller in the presence of Hydroxytryosol as determined by dynamic light scattering. Neither phenolic compound increased the thermal stability of NBD1-ΔF508 as measured by differential scanning fluorimetry. Interestingly, Hydroxytyrosol inhibited the stabilizing effect of the indole compound BIA, a known stabilizer, on NBD1-ΔF508. Molecular docking studies predicted that Oleuropein preferred to bind in the F1-type core ATP-binding subdomain in NBD1. In contrast, Hydroxytyrosol preferred to bind in the α4/α5/α6 helical bundle of the ABCα subdomain of NBD1 next to the putative binding site for BIA. This result suggests that Hydroxytyrosol interferes with BIA binding, thus providing an explanation for the antagonistic effect on NBD1 stability upon incubation with both compounds. To our knowledge, these studies are the first to explore the effects of these two phenolic compounds on the aggregation and stability of NBD1-ΔF508 domain of CFTR.
Collapse
|
9
|
Delorme V, Woo M, Falcão VCDA, Wood C. PlateEditor: A web-based application for the management of multi-well plate layouts and associated data. PLoS One 2021; 16:e0252488. [PMID: 34048502 PMCID: PMC8162687 DOI: 10.1371/journal.pone.0252488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
Multi-well plates are convenient tools to work with in biology experiments, as they allow the probing of multiple conditions in a compact and economic way. Although both free and commercial software exist for the definition of plate layout and management of plate data, we were looking for a more flexible solution, available anywhere, free from download, installation and licensing constraints. In this context, we created PlateEditor, a free web-based, client-side application allowing rapid creation of even complex layouts, including dose-response curves and multiple combination experiments for any plate format up to 1536 wells. PlateEditor also provides heatmap visualization and aggregation features to speed-up the process of data analysis and formatting for export in other application. Written in pure JavaScript, it is fully open-source, can be integrated in various workflows and has the potential to be extended with more functionalities in the future.
Collapse
Affiliation(s)
- Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
- * E-mail:
| | - Minjeong Woo
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | | | - Connor Wood
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
10
|
Gilbert NC, Gerstmeier J, Schexnaydre EE, Börner F, Garscha U, Neau DB, Werz O, Newcomer ME. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol 2020; 16:783-790. [PMID: 32393899 DOI: 10.1038/s41589-020-0544-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.
Collapse
Affiliation(s)
- Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Erin E Schexnaydre
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - David B Neau
- Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Cheng X, Prange-Barczynska M, Fielding JW, Zhang M, Burrell AL, Lima JD, Eckardt L, Argles IL, Pugh CW, Buckler KJ, Robbins PA, Hodson EJ, Bruick RK, Collinson LM, Rastinejad F, Bishop T, Ratcliffe PJ. Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control. J Clin Invest 2020; 130:2237-2251. [PMID: 31999648 PMCID: PMC7190921 DOI: 10.1172/jci133194] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is strikingly upregulated in many types of cancer, and there is great interest in applying inhibitors of HIF as anticancer therapeutics. The most advanced of these are small molecules that target the HIF-2 isoform through binding the PAS-B domain of HIF-2α. These molecules are undergoing clinical trials with promising results in renal and other cancers where HIF-2 is considered to be driving growth. Nevertheless, a central question remains as to whether such inhibitors affect physiological responses to hypoxia at relevant doses. Here, we show that pharmacological HIF-2α inhibition with PT2385, at doses similar to those reported to inhibit tumor growth, rapidly impaired ventilatory responses to hypoxia, abrogating both ventilatory acclimatization and carotid body cell proliferative responses to sustained hypoxia. Mice carrying a HIF-2α PAS-B S305M mutation that disrupts PT2385 binding, but not dimerization with HIF-1β, did not respond to PT2385, indicating that these effects are on-target. Furthermore, the finding of a hypomorphic ventilatory phenotype in untreated HIF-2α S305M mutant mice suggests a function for the HIF-2α PAS-B domain beyond heterodimerization with HIF-1β. Although PT2385 was well tolerated, the findings indicate the need for caution in patients who are dependent on hypoxic ventilatory drive.
Collapse
Affiliation(s)
- Xiaotong Cheng
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James W. Fielding
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | - Keith J. Buckler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A. Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Richard K. Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Peter J. Ratcliffe
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Velez G, Sun YJ, Khan S, Yang J, Herrmann J, Chemudupati T, MacLaren RE, Gakhar L, Wakatsuki S, Bassuk AG, Mahajan VB. Structural Insights into the Unique Activation Mechanisms of a Non-classical Calpain and Its Disease-Causing Variants. Cell Rep 2020; 30:881-892.e5. [PMID: 31968260 PMCID: PMC7001764 DOI: 10.1016/j.celrep.2019.12.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Increased calpain activity is linked to neuroinflammation including a heritable retinal disease caused by hyper-activating mutations in the calcium-activated calpain-5 (CAPN5) protease. Although structures for classical calpains are known, the structure of CAPN5, a non-classical calpain, remains undetermined. Here we report the 2.8 Å crystal structure of the human CAPN5 protease core (CAPN5-PC). Compared to classical calpains, CAPN5-PC requires high calcium concentrations for maximal activity. Structure-based phylogenetic analysis and multiple sequence alignment reveal that CAPN5-PC contains three elongated flexible loops compared to its classical counterparts. The presence of a disease-causing mutation (c.799G>A, p.Gly267Ser) on the unique PC2L2 loop reveals a function in this region for regulating enzymatic activity. This mechanism could be transferred to distant calpains, using synthetic calpain hybrids, suggesting an evolutionary mechanism for fine-tuning calpain function by modifying flexible loops. Further, the open (inactive) conformation of CAPN5-PC provides structural insight into CAPN5-specific residues that can guide inhibitor design.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA; Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Young Joo Sun
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Saif Khan
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, UK
| | - Jing Yang
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Jonathan Herrmann
- Department of Structural Biology, Stanford University, Palo Alto, CA 94305, USA; Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Teja Chemudupati
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Robert E MacLaren
- NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford EC1V 2PD, UK; Oxford Eye Hospital, University of Oxford NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Palo Alto, CA 94305, USA; Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Cross M, York M, Długosz E, Straub JH, Biberacher S, Herath HMPD, Logan SA, Kim JS, Gasser RB, Ryan JH, Hofmann A. A suicide inhibitor of nematode trehalose-6-phosphate phosphatases. Sci Rep 2019; 9:16165. [PMID: 31700060 PMCID: PMC6838324 DOI: 10.1038/s41598-019-52593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2022] Open
Abstract
Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 μM and 0.56 μM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 μM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.
Collapse
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Mark York
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Ewa Długosz
- Department of Preclinical Sciences, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Jan Hendrik Straub
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sonja Biberacher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephanie A Logan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
- Queensland Tropical Health Alliance, Smithfield, Queensland, 4878, Australia.
| |
Collapse
|
14
|
Sun C, Li Y, Yates EA, Fernig DG. SimpleDSFviewer: A tool to analyze and view differential scanning fluorimetry data for characterizing protein thermal stability and interactions. Protein Sci 2019; 29:19-27. [PMID: 31394001 DOI: 10.1002/pro.3703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 02/02/2023]
Abstract
Differential scanning fluorimetry (DSF) is a widely used thermal shift assay for measuring protein stability and protein-ligand interactions that are simple, cheap, and amenable to high throughput. However, data analysis remains a challenge, requiring improved methods. Here, the program SimpleDSFviewer, a user-friendly interface, is described to help the researchers who apply DSF technique in their studies. SimpleDSFviewer integrates melting curve (MC) normalization, smoothing, and melting temperature (Tm) analysis and directly previews analyzed data, providing an efficient analysis tool for DSF. SimpleDSFviewer is developed in Matlab, and it is freely available for all users to use in Matlab workspace or with Matlab Runtime. It is easy to use and an efficient tool for researchers to preview and analyze their data in a very short time.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Lee PH, Huang XX, Teh BT, Ng LM. TSA-CRAFT: A Free Software for Automatic and Robust Thermal Shift Assay Data Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:606-612. [PMID: 30744467 PMCID: PMC6537141 DOI: 10.1177/2472555218823547] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Thermal shift assay (TSA) is an increasingly popular technique used for identifying protein stabilizing conditions or interacting ligands in X-ray crystallography and drug discovery applications. Although the setting up and running of TSA reactions is a relatively simple process, the subsequent analysis of TSA data, especially in high-throughput format, requires substantial amount of effort if conducted manually. We therefore developed the Thermal Shift Assay-Curve Rapid and Automatic Fitting Tool (TSA-CRAFT), a freely available software that enable automatic analysis of TSA data of any throughput. TSA-CRAFT directly reads real-time PCR instrument data files and displays the analyzed results in a web browser. This software features streamlined data processing and Boltzmann equation fitting, which is demonstrated in this study to provide more accurate data analysis than the commonly used first-derivative method. TSA-CRAFT is freely available as a cross-operating system-compatible standalone tool ( https://sourceforge.net/projects/tsa-craft/ ) and also as a freely accessible web server ( http://tbtlab.org/tsacraft.html ).
Collapse
Affiliation(s)
- Po-Hsien Lee
- Cancer Science Institute of Singapore,
National University of Singapore, Singapore
| | - Xi Xiao Huang
- Cancer Science Institute of Singapore,
National University of Singapore, Singapore
| | - Bin Tean Teh
- Cancer Science Institute of Singapore,
National University of Singapore, Singapore
- Laboratory of Cancer Epigenome, Division
of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer and Stem Cell Biology Programme,
Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology,
Agency for Science, Technology and Research, Singapore
| | - Ley-Moy Ng
- Cancer Science Institute of Singapore,
National University of Singapore, Singapore
| |
Collapse
|
16
|
Hofmann A, Preston S, Cross M, Herath HMPD, Simon A, Gasser RB. DRfit: a Java tool for the analysis of discrete data from multi-well plate assays. BMC Bioinformatics 2019; 20:262. [PMID: 31113359 PMCID: PMC6528253 DOI: 10.1186/s12859-019-2891-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background Analyses of replicates in sets of discrete data, typically acquired in multi-well plate formats, is a recurring task in many contemporary areas in the Life Sciences. The availability of accessible cross-platform data analysis tools for such fundamental tasks in varied projects and environments is an important prerequisite to ensuring a reliable and timely turnaround as well as to provide practical analytical tools for student training. Results We have developed an easy-to-use, interactive software tool for the analysis of multiple data sets comprising replicates of discrete bivariate data points. For each dataset, the software identifies the replicate data points from a defined matrix layout and calculates their means and standard errors. The averaged values are then automatically fitted using either a linear or a logistic dose response function. Conclusions DRfit is a practical and convenient tool for the analysis of one or multiple sets of discrete data points acquired as replicates from multi-well plate assays. The design of the graphical user interface and the built-in analysis features make it a flexible and useful tool for a wide range of different assays. Electronic supplementary material The online version of this article (10.1186/s12859-019-2891-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia. .,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Sarah Preston
- Faculty of Science and Technology, Federation University, Ballarat, Victoria, 3350, Australia
| | - Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anne Simon
- Université Claude Bernard Lyon 1, Bâtiment Curien, Villeurbanne and Laboratoire Chimie et Biologie des Membranes et des Nanoobjets, Université de Bordeaux, Pessac, France
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
17
|
Bai N, Roder H, Dickson A, Karanicolas J. Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. Sci Rep 2019; 9:2650. [PMID: 30804351 PMCID: PMC6389909 DOI: 10.1038/s41598-018-37072-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Differential scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, has become a commonly-used approach for detecting protein-ligand interactions, particularly in the context of fragment screening. Upon binding to a folded protein, most ligands stabilize the protein; thus, observing an increase in the temperature at which the protein unfolds as a function of ligand concentration can serve as evidence of a direct interaction. While experimental protocols for this assay are well-developed, it is not straightforward to extract binding constants from the resulting data. Because of this, DSF is often used to probe for an interaction, but not to quantify the corresponding binding constant (Kd). Here, we propose a new approach for analyzing DSF data. Using unfolding curves at varying ligand concentrations, our "isothermal" approach collects from these the fraction of protein that is folded at a single temperature (chosen to be temperature near the unfolding transition). This greatly simplifies the subsequent analysis, because it circumvents the complicating temperature dependence of the binding constant; the resulting constant-temperature system can then be described as a pair of coupled equilibria (protein folding/unfolding and ligand binding/unbinding). The temperature at which the binding constants are determined can also be tuned, by adding chemical denaturants that shift the protein unfolding temperature. We demonstrate the application of this isothermal analysis using experimental data for maltose binding protein binding to maltose, and for two carbonic anhydrase isoforms binding to each of four inhibitors. To facilitate adoption of this new approach, we provide a free and easy-to-use Python program that analyzes thermal unfolding data and implements the isothermal approach described herein ( https://sourceforge.net/projects/dsf-fitting ).
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Heinrich Roder
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology and Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
18
|
Petchampai N, Murillo-Solano C, Isoe J, Pizarro JC, Scaraffia PY. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:82-90. [PMID: 30578824 PMCID: PMC6814295 DOI: 10.1016/j.ibmb.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diseases of public health significance. The discovery of new metabolic targets is crucial for improving mosquito control strategies. We recently demonstrated that glucose oxidation supports ammonia detoxification in A. aegypti. Pyruvate kinase (PK, EC 2.7.1.40) catalyzes the last step of the glycolytic pathway. In most organisms, one or more allosteric effectors control PK activity. However, the kinetic properties and structure of PK in mosquitoes have not been previously reported. In this study, two alternatively spliced mRNA variants (AaPK1 and AaPK2) that code for PKs were identified in the A. aegypti genome. The AaPK1 mRNA variant, which encodes a 529 amino acid protein with an estimated molecular weight of ∼57 kDa, was cloned. The protein was expressed in Escherichia coli and purified. The AaPK1 kinetic properties were identified. The recombinant protein was also crystallized and its 3D structure determined. We found that alanine, glutamine, proline, serine and fructose-1-phosphate displayed a classic allosteric activation on AaPK1. Ribulose-5-phosphate acted as an allosteric inhibitor of AaPK1 but its inhibitory effect was reversed by alanine, glutamine, proline and serine. Additionally, the allosteric activation of AaPK1 by amino acids was weakened by fructose-1,6-bisphosphate, whereas the allosteric activation of AaPK1 by alanine and serine was diminished by glucose-6-phosphate. The AaPK1 structure shows the presence of fructose-1,6-bisphosphate in the allosteric site. Together, our results reveal that specific amino acids and phosphorylated sugars tightly regulate conformational dynamics and catalytic changes of AaPK1. The distinctive AaPK1 allosteric properties support a complex role for this enzyme within mosquito metabolism.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
Torini JR, Romanello L, Batista FAH, Serrão VHB, Faheem M, Zeraik AE, Bird L, Nettleship J, Reddivari Y, Owens R, DeMarco R, Borges JC, Brandão-Neto J, Pereira HD. The molecular structure of Schistosoma mansoni PNP isoform 2 provides insights into the nucleoside selectivity of PNPs. PLoS One 2018; 13:e0203532. [PMID: 30192840 PMCID: PMC6128611 DOI: 10.1371/journal.pone.0203532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 μM for cytosine, and a KM of 76.3 μM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity of SmPNP2 active site alter the architecture of the nucleoside base binding site thus permitting an alternative binding mode for nucleosides, with a 180° rotation from the canonical binding mode. The remarkable plasticity of this binding site enhances our understanding of the correlation between structure and nucleotide selectivity, thus suggesting new ways to analyse PNP activity.
Collapse
Affiliation(s)
- Juliana Roberta Torini
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Larissa Romanello
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fernanda Aparecida Heleno Batista
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo, Brazil
- Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Biociências, Campinas, São Paulo, Brazil
| | - Vitor Hugo Balasco Serrão
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Muhammad Faheem
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District, Brazil
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Federal District, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Louise Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Joanne Nettleship
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Yamini Reddivari
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Ray Owens
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Ricardo DeMarco
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Júlio César Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, São Paulo, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Humberto D’Muniz Pereira
- Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Hoff KE, DeBalsi KL, Sanchez-Quintero MJ, Longley MJ, Hirano M, Naini AB, Copeland WC. Characterization of the human homozygous R182W POLG2 mutation in mitochondrial DNA depletion syndrome. PLoS One 2018; 13:e0203198. [PMID: 30157269 PMCID: PMC6114919 DOI: 10.1371/journal.pone.0203198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) have been linked to a variety of metabolic, neurological and muscular diseases which can present at any time throughout life. MtDNA is replicated by DNA polymerase gamma (Pol γ), twinkle helicase and mitochondrial single-stranded binding protein (mtSSB). The Pol γ holoenzyme is a heterotrimer consisting of the p140 catalytic subunit and a p55 homodimeric accessory subunit encoded by the nuclear genes POLG and POLG2, respectively. The accessory subunits enhance DNA binding and promote processive DNA synthesis of the holoenzyme. Mutations in either POLG or POLG2 are linked to disease and adversely affect maintenance of the mitochondrial genome, resulting in depletion, deletions and/or point mutations in mtDNA. A homozygous mutation located at Chr17: 62492543G>A in POLG2, resulting in R182W substitution in p55, was previously identified to cause mtDNA depletion and fatal hepatic liver failure. Here we characterize this homozygous R182W p55 mutation using in vivo cultured cell models and in vitro biochemical assessments. Compared to control fibroblasts, homozygous R182W p55 primary dermal fibroblasts exhibit a two-fold slower doubling time, reduced mtDNA copy number and reduced levels of POLG and POLG2 transcripts correlating with the reported disease state. Expression of R182W p55 in HEK293 cells impairs oxidative-phosphorylation. Biochemically, R182W p55 displays DNA binding and association with p140 similar to WT p55. R182W p55 mimics the ability of WT p55 to stimulate primer extension, support steady-state nucleotide incorporation, and suppress the exonuclease function of Pol γin vitro. However, R182W p55 has severe defects in protein stability as determined by differential scanning fluorimetry and in stimulating function as determined by thermal inactivation. These data demonstrate that the Chr17: 62492543G>A mutation in POLG2, R182W p55, severely impairs stability of the accessory subunit and is the likely cause of the disease phenotype.
Collapse
Affiliation(s)
- Kirsten E. Hoff
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC, United States of America
| | - Karen L. DeBalsi
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC, United States of America
| | - Maria J. Sanchez-Quintero
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, United States of America
| | - Matthew J. Longley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC, United States of America
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, United States of America
| | - Ali B. Naini
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- Division of Personalized Genomic Medicine, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States of America
| | - William C. Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC, United States of America
- * E-mail:
| |
Collapse
|
21
|
Chen Y, Murillo-Solano C, Kirkpatrick MG, Antoshchenko T, Park HW, Pizarro JC. Repurposing drugs to target the malaria parasite unfolding protein response. Sci Rep 2018; 8:10333. [PMID: 29985421 PMCID: PMC6037779 DOI: 10.1038/s41598-018-28608-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Drug resistant Plasmodium falciparum parasites represent a major obstacle in our efforts to control malaria, a deadly vector borne infectious disease. This situation creates an urgent need to find and validate new drug targets to contain the spread of the disease. Several genes associated with the unfolded protein response (UPR) including Glucose-regulated Protein 78 kDa (GRP78, also known as BiP) have been deemed potential drug targets. We explored the drug target potential of GRP78, a molecular chaperone that is a regulator of the UPR, for the treatment of P. falciparum parasite infection. By screening repurposed chaperone inhibitors that are anticancer agents, we showed that GRP78 inhibition is lethal to drug-sensitive and -resistant P. falciparum parasite strains in vitro. We correlated the antiplasmodial activity of the inhibitors with their ability to bind the malaria chaperone, by characterizing their binding to recombinant parasite GRP78. Furthermore, we determined the crystal structure of the ATP binding domain of P. falciparum GRP78 with ADP and identified structural features unique to the parasite. These data suggest that P. falciparum GRP78 can be a valid drug target and that its structural differences to human GRP78 emphasize potential to generate parasite specific compounds.
Collapse
Affiliation(s)
- Yun Chen
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Melanie G Kirkpatrick
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Tetyana Antoshchenko
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA
| | - Hee-Won Park
- Department of Molecular Biology and Biochemistry, School of Medicine, Tulane University, New Orleans, USA.,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA. .,Vector Borne Infectious Disease Research Center (VBIDRC), Tulane University, New Orleans, USA.
| |
Collapse
|
22
|
Quiliano M, Pabón A, Moles E, Bonilla-Ramirez L, Fabing I, Fong KY, Nieto-Aco DA, Wright DW, Pizarro JC, Vettorazzi A, López de Cerain A, Deharo E, Fernández-Busquets X, Garavito G, Aldana I, Galiano S. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Eur J Med Chem 2018; 152:489-514. [PMID: 29754074 DOI: 10.1016/j.ejmech.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.
Collapse
Affiliation(s)
- Miguel Quiliano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Universidad de Antioquía, Medellín, Colombia
| | - Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | - Isabelle Fabing
- Laboratoire de Synthese et Physicochimie de Molécules d'Intéret Biologique SPCMIB-UMR5068, CNRS - Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Diego A Nieto-Aco
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University USA; Vector-Borne Infectious Diseases Research Center, Tulane University USA
| | - Ariane Vettorazzi
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Adela López de Cerain
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Eric Deharo
- UMR 152 PHARMA-DEV, Université Toulouse, IRD, UPS, 31062, Toulouse, France
| | - Xavier Fernández-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia (DFUNC), Grupo de investigación FaMeTra (Farmacología de la Medicina tradicional y popular), Carrera 30 45-03, Bogotá D.C., Colombia
| | - Ignacio Aldana
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Silvia Galiano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain.
| |
Collapse
|
23
|
Dallaston MA, Rajan S, Chekaiban J, Wibowo M, Cross M, Coster MJ, Davis RA, Hofmann A. Dichloro-naphthoquinone as a non-classical inhibitor of the mycobacterial carbonic anhydrase Rv3588c. MEDCHEMCOMM 2017; 8:1318-1321. [PMID: 30108843 PMCID: PMC6072524 DOI: 10.1039/c7md00090a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022]
Abstract
The soluble mycobacterial carbonic anhydrases Rv3588c and Rv1284 belong to a different class of carbonic anhydrases than those found in humans, making them attractive drug targets by using the inherent differences in the folds of the different classes. By screening a natural product library, we identified naphthoquinone derivatives as a novel non-classical inhibitor scaffold of mycobacterial carbonic anhydrases that lack the sulfonamide/sulfamate group and thus did not affect human carbonic anhydrase II.
Collapse
Affiliation(s)
- M A Dallaston
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - S Rajan
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - J Chekaiban
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M Wibowo
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M Cross
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - M J Coster
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - R A Davis
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
| | - A Hofmann
- Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia . ;
- Faculty of Veterinary and Agricultural Sciences , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Queensland Tropical Health Alliance , Smithfield , Queensland 4878 , Australia
| |
Collapse
|
24
|
Mathiasen L, Valentini E, Boivin S, Cattaneo A, Blasi F, Svergun DI, Bruckmann C. The flexibility of a homeodomain transcription factor heterodimer and its allosteric regulation by DNA binding. FEBS J 2016; 283:3134-54. [PMID: 27390177 DOI: 10.1111/febs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions. DATABASE Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.
Collapse
Affiliation(s)
- Lisa Mathiasen
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | | | - Angela Cattaneo
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Francesco Blasi
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | - Chiara Bruckmann
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
25
|
Nienaber L, Cave-Freeman E, Cross M, Mason L, Bailey UM, Amani P, A Davis R, Taylor P, Hofmann A. Chemical probing suggests redox-regulation of the carbonic anhydrase activity of mycobacterial Rv1284. FEBS J 2015; 282:2708-21. [PMID: 25929542 DOI: 10.1111/febs.13313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED The mycobacterial enzyme Rv1284 is a member of the β-carbonic anhydrase family that is considered essential for survival of the pathogen. The active site cavity of this dimeric protein is characterized by an exceptionally small volume and harbours a catalytic zinc ion coordinated by two cysteine and one histidine residue side chains. Using the natural products polycarpine and emodin as chemical probes in crystallographic experiments and stopped-flow enzyme assays, we report that the catalytic activity can be reversibly inhibited by oxidation. Oxidative conditions lead to the removal of one of the active site cysteine residues from the coordination sphere of the catalytic metal ion by engagement in a disulfide bond with another cysteine residue close by. The subsequent loss of the metal ion, which is supported by crystallographic analysis, may thus render the protein catalytically inactive. The oxidative inhibition of Rv1284 can be reversed by exposing the protein to reducing conditions. Because the physical size of the chemical probes used in the present study substantially exceeds the active site volume, we hypothesized that these compounds exert their effects from a surface-bound location and identified Tyr120 as a critical residue for oxidative inactivation. These findings link conditions of oxidative stress to pH homeostasis of the pathogen. Because oxidative stress and acidification are defence mechanisms employed by the innate immune system of the host, we suggest that Rv1284 may be a component of the mycobacterial survival strategy. DATABASE Atomic coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 4yf4, 4yf5 and 4yf6.
Collapse
Affiliation(s)
- Lisa Nienaber
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia
| | | | - Megan Cross
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia
| | - Lyndel Mason
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia
| | - Ulla-Maja Bailey
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia
| | - Parisa Amani
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia
| | - Rohan A Davis
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia.,Queensland Tropical Health Alliance, Smithfield, Australia
| | - Paul Taylor
- School of Biological Sciences, The University of Edinburgh, Scotland, UK
| | - Andreas Hofmann
- Eskitis Institute, Griffith University, Nathan, Queensland, Australia.,Queensland Tropical Health Alliance, Smithfield, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Rosa N, Ristic M, Seabrook SA, Lovell D, Lucent D, Newman J. Meltdown: A Tool to Help in the Interpretation of Thermal Melt Curves Acquired by Differential Scanning Fluorimetry. ACTA ACUST UNITED AC 2015; 20:898-905. [PMID: 25918038 DOI: 10.1177/1087057115584059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
The output of a differential scanning fluorimetry (DSF) assay is a series of melt curves, which need to be interpreted to get value from the assay. An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called "Meltdown," conducts four main activities--control checks, curve normalization, outlier rejection, and melt temperature (T(m)) estimation--and performs optimally in the presence of triplicate (or higher) sample data. The final output is a report that summarizes the results of a DSF experiment. The goal of Meltdown is not to replace human analysis of the raw fluorescence data but to provide a meaningful and comprehensive interpretation of the data to make this useful experimental technique accessible to inexperienced users, as well as providing a starting point for detailed analyses by more experienced users.
Collapse
Affiliation(s)
- Nicholas Rosa
- Manufacturing Flagship, CSIRO, Parkville, VIC, Australia
| | - Marko Ristic
- Manufacturing Flagship, CSIRO, Parkville, VIC, Australia
| | | | - David Lovell
- Science and Engineering Faculty, QUT, Brisbane QLD, Australia
| | - Del Lucent
- Department of Physics, Wilkes University, Wilkes-Barre, PA, USA
| | - Janet Newman
- Manufacturing Flagship, CSIRO, Parkville, VIC, Australia
| |
Collapse
|
27
|
Mason L, Tribolet L, Simon A, von Gnielinski N, Nienaber L, Taylor P, Willis C, Jones MK, Sternberg PW, Gasser RB, Loukas A, Hofmann A. Probing the equatorial groove of the hookworm protein and vaccine candidate antigen, Na-ASP-2. Int J Biochem Cell Biol 2014; 50:146-55. [PMID: 24631931 DOI: 10.1016/j.biocel.2014.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/23/2014] [Accepted: 03/04/2014] [Indexed: 11/17/2022]
Abstract
Hookworm activation-associated secreted proteins can be structurally classified into at least three different groups. The hallmark feature of Group 1 activation-associated secreted proteins is a prominent equatorial groove, which is inferred to form a ligand binding site. Furthermore, a conserved tandem histidine motif is located in the centre of the groove and believed to provide or support a yet to be determined catalytic activity. Here, we report three-dimensional crystal structures of Na-ASP-2, an L3-secreted activation-associated secreted protein from the human hookworm Necator americanus, which demonstrate transition metal binding ability of the conserved tandem histidine motif. We further identified moderate phosphohydrolase activity of recombinant Na-ASP-2, which relates to the tandem histidine motif. By panning a random 12-mer peptide phage library, we identified a peptide with high similarity to the human calcium-activated potassium channel SK3, and confirm binding of the synthetic peptide to recombinant Na-ASP-2 by differential scanning fluorimetry. Potential binding modes of the peptide to Na-ASP-2 were studied by molecular dynamics simulations which clearly identify a preferred topology of the Na-ASP-2:SK3 peptide complex.
Collapse
Affiliation(s)
- Lyndel Mason
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia
| | - Leon Tribolet
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Anne Simon
- Université Lyon 1, Villeurbanne cedex, and Laboratoire Chimie et Biologie des Membranes et des Nanoobjets, Université Bordeaux, CBMN, UMR 5248, 33600 Pessac, France
| | - Natascha von Gnielinski
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia
| | - Lisa Nienaber
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia
| | - Paul Taylor
- Institute for Structural Biology, School of Biological Sciences, The University of Edinburgh, Scotland, UK
| | - Charlene Willis
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia; School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia; Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Paul W Sternberg
- Biology Division, California Institute of Technology, Pasadena, CA, USA
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia; Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Menzen T, Friess W. High-throughput melting-temperature analysis of a monoclonal antibody by differential scanning fluorimetry in the presence of surfactants. J Pharm Sci 2012; 102:415-28. [PMID: 23212746 DOI: 10.1002/jps.23405] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/09/2012] [Indexed: 01/07/2023]
Abstract
Differential scanning fluorimetry (DSF) is successfully used as a high-throughput screening method for the analysis of the protein melting temperature (T(m)) in the development of therapeutic monoclonal antibody (MAb) formulations. Typically, surfactants are utilized in MAb formulations as a stabilizer, but the commonly applied polarity-sensitive dye SYPRO® Orange shows bright fluorescence in the presence of micelles, concealing the signal of protein unfolding. Studying various MAb formulations containing polysorbate 20, polysorbate 80, or poloxamer 188 (PX 188), the molecular rotor probe 4-(dicyanovinyl)julolidine (DCVJ) was investigated. Although limited to higher MAb concentrations, DCVJ enabled the determination of T(m) in many formulations where SYPRO® Orange failed. It is important to note that careful background correction of placebo formulations is essential for the precise determination of T(m) and especially T(m onset). Thermal shifts of T(m1) (lowest observed thermal transition) indicating stabilizing or destabilizing effects of pH or excipient were in good agreement across all tested formulations and correlated well with differential scanning calorimetry measurements. Additionally, the micellization temperature of PX 188 was confirmed, which leads to a nonproteinous transition. With this new method, it is possible to apply DSF during the development of therapeutic proteins in surfactant-containing formulations.
Collapse
Affiliation(s)
- Tim Menzen
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich 81377, Germany.
| | | |
Collapse
|
29
|
Schulz MN, Landström J, Hubbard RE. MTSA--a Matlab program to fit thermal shift data. Anal Biochem 2012; 433:43-7. [PMID: 23098701 DOI: 10.1016/j.ab.2012.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/06/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022]
Abstract
Thermal shift analysis is becoming widely used as a method to identify initial hit ligands for inhibitor discovery or to identify ligands that may aid crystallization. The data analysis software provided by the equipment manufacturers or in the public domain is cumbersome to use. We have assessed a number of different approaches to generate a value for the melting temperature (T(m)) and implemented these methods in the program MTSA within the commercial software Matlab to provide an easy-to-use and rapid way to process experimental thermal shift data. The program outputs the T(m), the quality of the fit, and the deviation from a standard value, the thermal shift ΔT(m). Our analysis of these results includes a discussion of some issues with previous publications in this area. We conclude that the most suitable value for T(m) should be taken from the midpoint determined for a curve fitted to the experimental data with a five-parameter equation. In addition, we found that different ranking of ligand binding can be obtained using the different techniques when screening for binding of weak ligands such as fragments. Therefore, the technique should be used with caution for such screening.
Collapse
Affiliation(s)
- Michèle N Schulz
- York Structural Biology Laboratory (YSBL), Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | |
Collapse
|
30
|
Weeratunga S, Hu NJ, Simon A, Hofmann A. SDAR: a practical tool for graphical analysis of two-dimensional data. BMC Bioinformatics 2012; 13:201. [PMID: 22892030 PMCID: PMC3480940 DOI: 10.1186/1471-2105-13-201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Background Two-dimensional data needs to be processed and analysed in almost any experimental laboratory. Some tasks in this context may be performed with generic software such as spreadsheet programs which are available ubiquitously, others may require more specialised software that requires paid licences. Additionally, more complex software packages typically require more time by the individual user to understand and operate. Practical and convenient graphical data analysis software in Java with a user-friendly interface are rare. Results We have developed SDAR, a Java application to analyse two-dimensional data with an intuitive graphical user interface. A smart ASCII parser allows import of data into SDAR without particular format requirements. The centre piece of SDAR is the Java class GraphPanel which provides methods for generic tasks of data visualisation. Data can be manipulated and analysed with respect to the most common operations experienced in an experimental biochemical laboratory. Images of the data plots can be generated in SVG-, TIFF- or PNG-format. Data exported by SDAR is annotated with commands compatible with the Grace software. Conclusion Since SDAR is implemented in Java, it is truly cross-platform compatible. The software is easy to install, and very convenient to use judging by experience in our own laboratories. It is freely available to academic users at
http://www.structuralchemistry.org/pcsb/. To download SDAR, users will be asked for their name, institution and email address. A manual, as well as the source code of the GraphPanel class can also be downloaded from this site.
Collapse
Affiliation(s)
- Saroja Weeratunga
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | | | | | | |
Collapse
|