1
|
Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics. Processes (Basel) 2021. [DOI: 10.3390/pr9101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To understand the phenotypic capabilities of organisms, it is useful to characterise cellular metabolism through the analysis of its pathways. Dynamic mathematical modelling of metabolic networks is of high interest as it provides the time evolution of the metabolic components. However, it also has limitations, such as the necessary mechanistic details and kinetic parameters are not always available. On the other hand, large metabolic networks exhibit a complex topological structure which can be studied rather efficiently in their stationary regime by constraint-based methods. These methods produce useful predictions on pathway operations. In this review, we present both modelling techniques and we show how they bring complementary views of metabolism. In particular, we show on a simple example how both approaches can be used in conjunction to shed some light on the dynamics of metabolic networks.
Collapse
|
2
|
Yates CA, George A, Jordana A, Smith CA, Duncan AB, Zygalakis KC. The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes. J R Soc Interface 2020; 17:20200563. [PMID: 33081647 PMCID: PMC7653393 DOI: 10.1098/rsif.2020.0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The simulation of stochastic reaction–diffusion systems using fine-grained representations can become computationally prohibitive when particle numbers become large. If particle numbers are sufficiently high then it may be possible to ignore stochastic fluctuations and use a more efficient coarse-grained simulation approach. Nevertheless, for multiscale systems which exhibit significant spatial variation in concentration, a coarse-grained approach may not be appropriate throughout the simulation domain. Such scenarios suggest a hybrid paradigm in which a computationally cheap, coarse-grained model is coupled to a more expensive, but more detailed fine-grained model, enabling the accurate simulation of the fine-scale dynamics at a reasonable computational cost. In this paper, in order to couple two representations of reaction–diffusion at distinct spatial scales, we allow them to overlap in a ‘blending region’. Both modelling paradigms provide a valid representation of the particle density in this region. From one end of the blending region to the other, control of the implementation of diffusion is passed from one modelling paradigm to another through the use of complementary ‘blending functions’ which scale up or down the contribution of each model to the overall diffusion. We establish the reliability of our novel hybrid paradigm by demonstrating its simulation on four exemplar reaction–diffusion scenarios.
Collapse
Affiliation(s)
- Christian A Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Adam George
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Armand Jordana
- Centre de Mathématiques et de Leurs Applications, CNRS, ENS Paris-Saclay, Université Paris-Saclay, 94235 Cachan cedex, France
| | - Cameron A Smith
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andrew B Duncan
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Konstantinos C Zygalakis
- School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
3
|
Ruiz-Martínez Á, Bartol TM, Sejnowski TJ, Tartakovsky DM. Stochastic self-tuning hybrid algorithm for reaction-diffusion systems. J Chem Phys 2019; 151:244117. [PMID: 31893874 PMCID: PMC7341680 DOI: 10.1063/1.5125022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Many biochemical phenomena involve reactants with vastly different concentrations, some of which are amenable to continuum-level descriptions, while the others are not. We present a hybrid self-tuning algorithm to model such systems. The method combines microscopic (Brownian) dynamics for diffusion with mesoscopic (Gillespie-type) methods for reactions and remains efficient in a wide range of regimes and scenarios with large variations of concentrations. Its accuracy, robustness, and versatility are balanced by redefining propensities and optimizing the mesh size and time step. We use a bimolecular reaction to demonstrate the potential of our method in a broad spectrum of scenarios: from almost completely reaction-dominated systems to cases where reactions rarely occur or take place very slowly. The simulation results show that the number of particles present in the system does not degrade the performance of our method. This makes it an accurate and computationally efficient tool to model complex multireaction systems.
Collapse
Affiliation(s)
- Á Ruiz-Martínez
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - T M Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - T J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - D M Tartakovsky
- Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
4
|
Köster T, Henning P, Uhrmacher AM. Potential based, spatial simulation of dynamically nested particles. BMC Bioinformatics 2019; 20:607. [PMID: 31775608 PMCID: PMC6880518 DOI: 10.1186/s12859-019-3092-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND To study cell biological phenomena which depend on diffusion, active transport processes, or the locations of species, modeling and simulation studies need to take space into account. To describe the system as a collection of discrete objects moving and interacting in continuous space, various particle-based reaction diffusion simulators for cell-biological system have been developed. So far the focus has been on particles as solid spheres or points. However, spatial dynamics might happen at different organizational levels, such as proteins, vesicles or cells with interrelated dynamics which requires spatial approaches that take this multi-levelness of cell biological systems into account. RESULTS Based on the perception of particles forming hollow spheres, ML-Force contributes to the family of particle-based simulation approaches: in addition to excluded volumes and forces, it also supports compartmental dynamics and relating dynamics between different organizational levels explicitly. Thereby, compartmental dynamics, e.g., particles entering and leaving other particles, and bimolecular reactions are modeled using pair-wise potentials (forces) and the Langevin equation. In addition, forces that act independently of other particles can be applied to direct the movement of particles. Attributes and the possibility to define arbitrary functions on particles, their attributes and content, to determine the results and kinetics of reactions add to the expressiveness of ML-Force. Its implementation comprises a rudimentary rule-based embedded domain-specific modeling language for specifying models and a simulator for executing models continuously. Applications inspired by cell biological models from literature, such as vesicle transport or yeast growth, show the value of the realized features. They facilitate capturing more complex spatial dynamics, such as the fission of compartments or the directed movement of particles, and enable the integration of non-spatial intra-compartmental dynamics as stochastic events. CONCLUSIONS By handling all dynamics based on potentials (forces) and the Langevin equation, compartmental dynamics, such as dynamic nesting, fusion and fission of compartmental structures are handled continuously and are seamlessly integrated with traditional particle-based reaction-diffusion dynamics within the cell. Thereby, attributes and arbitrary functions allow to flexibly describe diverse spatial phenomena, and relate dynamics across organizational levels. Also they prove crucial in modeling intra-cellular or intra-compartmental dynamics in a non-spatial manner, and, thus, to abstract from spatial dynamics, on demand which increases the range of multi-compartmental processes that can be captured.
Collapse
Affiliation(s)
- Till Köster
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| | - Philipp Henning
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| | - Adelinde M. Uhrmacher
- Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059 Germany
| |
Collapse
|
5
|
Kang HW, Erban R. Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations. Bull Math Biol 2019; 81:3185-3213. [PMID: 31165406 PMCID: PMC6677718 DOI: 10.1007/s11538-019-00613-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Two multiscale algorithms for stochastic simulations of reaction-diffusion processes are analysed. They are applicable to systems which include regions with significantly different concentrations of molecules. In both methods, a domain of interest is divided into two subsets where continuous-time Markov chain models and stochastic partial differential equations (SPDEs) are used, respectively. In the first algorithm, Markov chain (compartment-based) models are coupled with reaction-diffusion SPDEs by considering a pseudo-compartment (also called an overlap or handshaking region) in the SPDE part of the computational domain right next to the interface. In the second algorithm, no overlap region is used. Further extensions of both schemes are presented, including the case of an adaptively chosen boundary between different modelling approaches.
Collapse
Affiliation(s)
- Hye-Won Kang
- Department of Mathematics and Statistics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG UK
| |
Collapse
|
6
|
Abstract
As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .
Collapse
|
7
|
Smith CA, Yates CA. Spatially extended hybrid methods: a review. J R Soc Interface 2018; 15:20170931. [PMID: 29491179 PMCID: PMC5832735 DOI: 10.1098/rsif.2017.0931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques. While coarser methods such as partial differential equations are typically fast to simulate, they lack the individual-level detail that may be required in regions of low concentration or small spatial scale. However, to simulate at such an individual level throughout a domain and in regions where concentrations are high can be computationally expensive. Spatially coupled hybrid methods provide a bridge, allowing for multiple representations of the same species in one spatial domain by partitioning space into distinct modelling subdomains. Over the past 20 years, such hybrid methods have risen to prominence, leading to what is now a very active research area across multiple disciplines including chemistry, physics and mathematics. There are three main motivations for undertaking this review. Firstly, we have collated a large number of spatially extended hybrid methods and presented them in a single coherent document, while comparing and contrasting them, so that anyone who requires a multiscale hybrid method will be able to find the most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we have presented papers that employ these methods on real biological and physical problems, demonstrating their utility. We also consider some open research questions in the area of hybrid method development and the future directions for the field.
Collapse
Affiliation(s)
- Cameron A Smith
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Christian A Yates
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
8
|
Bittig AT, Uhrmacher AM. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1339-1349. [PMID: 27514063 DOI: 10.1109/tcbb.2016.2598162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Collapse
|
9
|
Taylor PR, Baker RE, Simpson MJ, Yates CA. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches. J R Soc Interface 2016; 13:20160336. [PMID: 27383421 PMCID: PMC4971222 DOI: 10.1098/rsif.2016.0336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 12/18/2022] Open
Abstract
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are 'compartment-based': the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise.
Collapse
Affiliation(s)
- P R Taylor
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - R E Baker
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - M J Simpson
- Mathematical Sciences, Queensland University of Technology, G.P.O. Box 2434, Brisbane 4001, Australia
| | - C A Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Flegga MB, Hellander S, Erban R. Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations. JOURNAL OF COMPUTATIONAL PHYSICS 2015; 289:1-17. [PMID: 26568640 PMCID: PMC4639942 DOI: 10.1016/j.jcp.2015.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: (i) Δt → 0 and h is fixed; (ii) Δt → 0 and h → 0 such that √Δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Collapse
Affiliation(s)
- Mark B Flegga
- School of Mathematical Sciences, Monash University, Wellington road, Clayton, Melbourne, Australia;
| | - Stefan Hellander
- Department of Computer Science, University of California, Santa Barbara, CA 93106-5070 Santa Barbara, USA;
| | - Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom;
| |
Collapse
|
11
|
Yates CA, Flegg MB. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion. J R Soc Interface 2015; 12:20150141. [PMID: 25904527 PMCID: PMC4424691 DOI: 10.1098/rsif.2015.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022] Open
Abstract
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations.
Collapse
Affiliation(s)
- Christian A Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mark B Flegg
- School of Mathematical Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Robinson M, Andrews SS, Erban R. Multiscale reaction-diffusion simulations with Smoldyn. Bioinformatics 2015; 31:2406-8. [PMID: 25788627 PMCID: PMC4495299 DOI: 10.1093/bioinformatics/btv149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Summary: Smoldyn is a software package for stochastic modelling of spatial biochemical networks and intracellular systems. It was originally developed with an accurate off-lattice particle-based model at its core. This has recently been enhanced with the addition of a computationally efficient on-lattice model, which can be run stand-alone or coupled together for multiscale simulations using both models in regions where they are most required, increasing the applicability of Smoldyn to larger molecule numbers and spatial domains. Simulations can switch between models with only small additions to their configuration file, enabling users with existing Smoldyn configuration files to run the new on-lattice model with any reaction, species or surface descriptions they might already have. Availability and Implementation: Source code and binaries freely available for download at www.smoldyn.org, implemented in C/C++ and supported on Linux, Mac OSX and MS Windows. Contact:martin.robinson@maths.ox.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online and include additional details on model specification and modelling of surfaces, as well as the Smoldyn configuration file used to generate Figure 1.
Collapse
Affiliation(s)
- Martin Robinson
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom and
| | - Steven S Andrews
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom and
| |
Collapse
|
13
|
Abstract
The reaction-diffusion master equation (RDME) is a lattice stochastic reaction-diffusion model that has been used to study spatially distributed cellular processes. The RDME is often interpreted as an approximation to spatially continuous models in which molecules move by Brownian motion and react by one of several mechanisms when sufficiently close. In the limit that the lattice spacing approaches zero, in two or more dimensions, the RDME has been shown to lose bimolecular reactions. The RDME is therefore not a convergent approximation to any spatially continuous model that incorporates bimolecular reactions. In this work we derive a new convergent RDME (CRDME) by finite volume discretization of a spatially continuous stochastic reaction-diffusion model popularized by Doi. We demonstrate the numerical convergence of reaction time statistics associated with the CRDME. For sufficiently large lattice spacings or slow bimolecular reaction rates, we also show that the reaction time statistics of the CRDME may be approximated by those from the RDME. The original RDME may therefore be interpreted as an approximation to the CRDME in several asymptotic limits.
Collapse
Affiliation(s)
- Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA.
| |
Collapse
|
14
|
Stochastic reaction-diffusion processes with embedded lower-dimensional structures. Bull Math Biol 2013; 76:819-53. [PMID: 24163106 DOI: 10.1007/s11538-013-9910-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Small copy numbers of many molecular species in biological cells require stochastic models of the chemical reactions between the molecules and their motion. Important reactions often take place on one-dimensional structures embedded in three dimensions with molecules migrating between the dimensions. Examples of polymer structures in cells are DNA, microtubules, and actin filaments. An algorithm for simulation of such systems is developed at a mesoscopic level of approximation. An arbitrarily shaped polymer is coupled to a background Cartesian mesh in three dimensions. The realization of the system is made with a stochastic simulation algorithm in the spirit of Gillespie. The method is applied to model problems for verification and two more detailed models of transcription factor interaction with the DNA.
Collapse
|
15
|
Hellander S. Single molecule simulations in complex geometries with embedded dynamic one-dimensional structures. J Chem Phys 2013; 139:014103. [PMID: 23822289 PMCID: PMC3716785 DOI: 10.1063/1.4811395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/31/2013] [Indexed: 11/14/2022] Open
Abstract
Stochastic models of reaction-diffusion systems are important for the study of biochemical reaction networks where species are present in low copy numbers or if reactions are highly diffusion limited. In living cells many such systems include reactions and transport on one-dimensional structures, such as DNA and microtubules. The cytoskeleton is a dynamic structure where individual fibers move, grow, and shrink. In this paper we present a simulation algorithm that combines single molecule simulations in three-dimensional space with single molecule simulations on one-dimensional structures of arbitrary shape. Molecules diffuse and react with each other in space, they associate with and dissociate from one-dimensional structures as well as diffuse and react with each other on the one-dimensional structure. A general curve embedded in space can be approximated by a piecewise linear curve to arbitrary accuracy. The resulting algorithm is hence very flexible. Molecules bound to a curve can move by pure diffusion or via active transport, and the curve can move in space as well as grow and shrink. The flexibility and accuracy of the algorithm is demonstrated in five numerical examples.
Collapse
Affiliation(s)
- Stefan Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Klann M, Koeppl H. Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions. Phys Biol 2013; 10:046005. [DOI: 10.1088/1478-3975/10/4/046005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|