1
|
Marzari A, Racotta IS, Escobedo-Fregoso C, Artigaud S, Kraffe E, Salgado-García RL. Reproductive effort affects cellular response in the mantle of Nodipecten subnodosus scallops exposed to acute hyperthermia. Comp Biochem Physiol A Mol Integr Physiol 2024:111766. [PMID: 39426584 DOI: 10.1016/j.cbpa.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In marine ecosystems, temperature regulates the energy metabolism of animals. In the last decades, the temperature increase was related to mass mortality events of marine ectotherms, particularly during high-energy investment for reproduction. In scallops, the mantle has been poorly investigated while this tissue covers more than 40 % of the body mass, contributing to the perception of surrounding environmental stimuli. Our aim was to assess the cellular and molecular responses linked to energy metabolism in the mantle of adult N. subnodosus facing acute hyperthermia during reproductive effort. Scallops collected in spring (late gametogenesis) and summer (ripe gonads) were exposed to a control temperature (22 °C) or acute hyperthermia (30 °C) for 24 h. In spring, increased arginine kinase (AK) activity together with increased pyruvate kinase/citrate synthase ratio (PK/CS) suggested an enhanced carbohydrate, pyruvate, and arginine metabolism to maintain the adenylate energy charge (AEC) in the mantle of scallops coping with acute thermal increase. In summer, animals decreased their AEC (5 %) and arginine phosphate pool (40 %) and increased their anaerobic metabolism as shown by enhanced activities of lactate-dehydrogenase (LDH) and octopine dehydrogenase (ODH), respectively. The abundance of twenty proteins involved in energy metabolism (isocitrate dehydrogenase, ATP synthase subunit β), protein protection (cognates heat shock protein 70), and cytoskeleton (actins and tubulins) were affected only by season. These results underlie the role of the mantle of N. subnodosus in the seasonal responses of this tissue to thermal fluctuations during reproductive effort with possible implications for the physiological performance of scallops under heat waves in wild or harvest conditions.
Collapse
Affiliation(s)
- A Marzari
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - I S Racotta
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - C Escobedo-Fregoso
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| | - S Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - E Kraffe
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Univ Brest, CNRS, IRD, Ifremer, IUEM, F-29280 Plouzane, France.
| | - R L Salgado-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, B.C.S, Mexico.
| |
Collapse
|
2
|
Ahmad P, Escalante-Herrera A, Marin LM, Siqueira WL. Progression from healthy periodontium to gingivitis and periodontitis: Insights from bioinformatics-driven proteomics - A systematic review with meta-analysis. J Periodontal Res 2024. [PMID: 38873831 DOI: 10.1111/jre.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
AIM The current study aimed to: (1) systematically review the published literature regarding the proteomics analyses of saliva and gingival crevicular fluid (GCF) in healthy humans and gingivitis and/or periodontitis patients; and (2) to identify the differentially expressed proteins (DEPs) based on the systematic review, and comprehensively conduct meta-analyses and bioinformatics analyses. METHODS An online search of Web of Science, Scopus, and PubMed was performed without any restriction on the year and language of publication. After the identification of the DEPs reported by the included human primary studies, gene ontology (GO), the Kyoto encyclopedia of genes and genomes pathway (KEGG), protein-protein interaction (PPI), and meta-analyses were conducted. The risk of bias among the included studies was evaluated using the modified Newcastle-Ottawa quality assessment scale. RESULTS The review identified significant differences in protein expression between healthy individuals and those with gingivitis and periodontitis. In GCF, 247 proteins were upregulated and 128 downregulated in periodontal diseases. Saliva analysis revealed 79 upregulated and 70 downregulated proteins. There were distinct protein profiles between gingivitis and periodontitis, with 159 and 31 unique upregulated proteins in GCF, respectively. Meta-analyses confirmed significant upregulation of various proteins in periodontitis, including ALB and MMP9, while CSTB and GSTP1 were downregulated. AMY1A and SERPINA1 were upregulated in periodontitis saliva. HBD was upregulated in gingivitis GCF, while DEFA3 was downregulated. PPI analysis revealed complex networks of interactions among DEPs. GO and KEGG pathway analyses provided insights into biological processes and pathways associated with periodontal diseases. CONCLUSION The ongoing MS-based proteomics studies emphasize the need for a highly sensitive and specific diagnostic tool for periodontal diseases. Clinician acceptance of the eventual diagnostic method relies on its ability to provide superior or complementary information to current clinical assessment procedures. Future research should prioritize the multiplex measurement of multiple biomarkers simultaneously to enhance diagnostic accuracy and large study cohorts are necessary to ensure the validity and reliability of research findings.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Solorzano J, Carrillo-de Santa Pau E, Laguna T, Busturia A. A genome-wide computational approach to define microRNA-Polycomb/trithorax gene regulatory circuits in Drosophila. Dev Biol 2023; 495:63-75. [PMID: 36596335 DOI: 10.1016/j.ydbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Characterization of gene regulatory networks is fundamental to understanding homeostatic development. This process can be simplified by analyzing relatively simple genomes such as the genome of Drosophila melanogaster. In this work we have developed a computational framework in Drosophila to explore for the presence of gene regulatory circuits between two large groups of transcriptional regulators: the epigenetic group of the Polycomb/trithorax (PcG/trxG) proteins and the microRNAs (miRNAs). We have searched genome-wide for miRNA targets in PcG/trxG transcripts as well as for Polycomb Response Elements (PREs) in miRNA genes. Our results show that 10% of the analyzed miRNAs could be controlling PcG/trxG gene expression, while 40% of those miRNAs are putatively controlled by the selected set of PcG/trxG proteins. The integration of these analyses has resulted in the predicted existence of 3 classes of miRNA-PcG/trxG crosstalk interactions that define potential regulatory circuits. In the first class, miRNA-PcG circuits are defined by miRNAs that reciprocally crosstalk with PcG. In the second, miRNA-trxG circuits are defined by miRNAs that reciprocally crosstalk with trxG. In the third class, miRNA-PcG/trxG shared circuits are defined by miRNAs that crosstalk with both PcG and trxG regulators. These putative regulatory circuits may uncover a novel mechanism in Drosophila for the control of PcG/trxG and miRNAs levels of expression. The computational framework developed here for Drosophila melanogaster can serve as a model case for similar analyses in other species. Moreover, our work provides, for the first time, a new and useful resource for the Drosophila community to consult prior to experimental studies investigating the epigenetic regulatory networks of miRNA-PcG/trxG mediated gene expression.
Collapse
Affiliation(s)
- Jacobo Solorzano
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, 28049, Madrid, Spain; Centre de Recherches en Cancerologie de Toulouse, 2 Av. Hubert Curien, 31100, Toulouse, France
| | - Enrique Carrillo-de Santa Pau
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Teresa Laguna
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain.
| | - Ana Busturia
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
4
|
MEF: Multidimensional Examination Framework for Prioritization of COVID-19 Severe Patients and Promote Precision Medicine Based on Hybrid Multi-Criteria Decision-Making Approaches. Bioengineering (Basel) 2022; 9:bioengineering9090457. [PMID: 36135003 PMCID: PMC9495842 DOI: 10.3390/bioengineering9090457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Effective prioritization plays critical roles in precision medicine. Healthcare decisions are complex, involving trade-offs among numerous frequently contradictory priorities. Considering the numerous difficulties associated with COVID-19, approaches that could triage COVID-19 patients may help in prioritizing treatment and provide precise medicine for those who are at risk of serious disease. Prioritizing a patient with COVID-19 depends on a variety of examination criteria, but due to the large number of these biomarkers, it may be hard for medical practitioners and emergency systems to decide which cases should be given priority for treatment. The aim of this paper is to propose a Multidimensional Examination Framework (MEF) for the prioritization of COVID-19 severe patients on the basis of combined multi-criteria decision-making (MCDM) methods. In contrast to the existing literature, the MEF has not considered only a single dimension of the examination factors; instead, the proposed framework included different multidimensional examination criteria such as demographic, laboratory findings, vital signs, symptoms, and chronic conditions. A real dataset that consists of data from 78 patients with different examination criteria was used as a base in the construction of Multidimensional Evaluation Matrix (MEM). The proposed framework employs the CRITIC (CRiteria Importance Through Intercriteria Correlation) method to identify objective weights and importance for multidimensional examination criteria. Furthermore, the VIKOR (VIekriterijumsko KOmpromisno Rangiranje) method is utilized to prioritize COVID-19 severe patients. The results based on the CRITIC method showed that the most important examination criterion for prioritization is COVID-19 patients with heart disease, followed by cough and nasal congestion symptoms. Moreover, the VIKOR method showed that Patients 8, 3, 9, 59, and 1 are the most urgent cases that required the highest priority among the other 78 patients. Finally, the proposed framework can be used by medical organizations to prioritize the most critical COVID-19 patient that has multidimensional examination criteria and to promptly give appropriate care for more precise medicine.
Collapse
|
5
|
Even Y, Pousse E, Chapperon C, Artigaud S, Hégaret H, Bernay B, Pichereau V, Flye-Sainte-Marie J, Jean F. Physiological and comparative proteomic analyzes reveal immune defense response of the king scallop Pecten maximus in presence of paralytic shellfish toxin (PST) from Alexandrium minutum. HARMFUL ALGAE 2022; 115:102231. [PMID: 35623695 DOI: 10.1016/j.hal.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
The king scallop, Pecten maximus is a highly valuable seafood in Europe. Over the last few years, its culture has been threatened by toxic microalgae during harmful algal blooms, inducing public health concerns. Indeed, phycotoxins accumulated in bivalves can be harmful for human, especially paralytic shellfish toxins (PST) synthesized by the microalgae Alexandrium minutum. Deleterious effects of these toxic algae on bivalves have also been reported. However, its impact on bivalves such as king scallop is far from being completely understood. This study combined ecophysiological and proteomic analyzes to investigate the early response of juvenile king scallops to a short term exposure to PST producing A. minutum. Our data showed that all along the 2-days exposure to A. minutum, king scallops exhibited transient lower filtration and respiration rates and accumulated PST. Significant inter-individual variability of toxin accumulation potential was observed among individuals. Furthermore, we found that ingestion of toxic algae, correlated to toxin accumulation was driven by two factors: 1/ the time it takes king scallop to recover from filtration inhibition and starts to filtrate again, 2/ the filtration level to which king scallop starts again to filtrate after inhibition. Furthermore, at the end of the 2-day exposure to A. minutum, proteomic analyzes revealed an increase of the killer cell lectin-like receptor B1, involved in adaptative immune response. Proteins involved in detoxification and in metabolism were found in lower amount in A. minutum exposed king scallops. Proteomic data also showed differential accumulation in several structure proteins such as β-actin, paramyosin and filamin A, suggesting a remodeling of the mantle tissue when king scallops are subjected to an A. minutum exposure.
Collapse
Affiliation(s)
- Yasmine Even
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Emilien Pousse
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Coraline Chapperon
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Benoit Bernay
- Plateforme Proteogen, Université de Caen Normandie, Esplanade de la paix, 14032 Caen, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 CNRS/UBO - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
6
|
Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA, Fillmore TL, Frohnert BI, Rewers M, Krischer JP, Ansong C, Suchy-Dicey AM, Evans-Molina C, Qian WJ, Webb-Robertson BJM, Metz TO. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc 2021; 16:3737-3760. [PMID: 34244696 PMCID: PMC8830262 DOI: 10.1038/s41596-021-00566-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease biomarkers. However, certain critical steps of study design such as cohort selection, evaluation of statistical power, sample blinding and randomization, and sample/data quality control are often neglected or underappreciated during experimental design and execution. This tutorial discusses important steps for designing and implementing a liquid-chromatography-mass-spectrometry-based biomarker discovery study. We describe the rationale, considerations and possible failures in each step of such studies, including experimental design, sample collection and processing, and data collection. We also provide guidance for major steps of data processing and final statistical analysis for meaningful biological interpretations along with highlights of several successful biomarker studies. The provided guidelines from study design to implementation to data interpretation serve as a reference for improving rigor and reproducibility of biomarker development studies.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Marina Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brigitte I Frohnert
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Jeffrey P Krischer
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Astrid M Suchy-Dicey
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
7
|
Tétard‐Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:709-720. [PMID: 29575327 PMCID: PMC5969246 DOI: 10.1111/tpj.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 05/02/2023]
Abstract
Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.
Collapse
Affiliation(s)
- Catherine Tétard‐Jones
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| | | | - Stephen Moss
- Stephen Moss Consulting7 Alzey GardensHarpendenHertfordshireAL5 5SZUK
| | - Richard Hull
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Paul Neve
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| |
Collapse
|
8
|
Vacano GN, Gibson DS, Turjoman AA, Gawryluk JW, Geiger JD, Duncan M, Patterson D. Proteomic analysis of six- and twelve-month hippocampus and cerebellum in a murine Down syndrome model. Neurobiol Aging 2017; 63:96-109. [PMID: 29245059 DOI: 10.1016/j.neurobiolaging.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
This study was designed to investigate the brain proteome of the Ts65Dn mouse model of Down syndrome. We profiled the cerebellum and hippocampus proteomes of 6- and 12-month-old trisomic and disomic mice by difference gel electrophoresis. We quantified levels of 2082 protein spots and identified 272 (170 unique UniProt accessions) by mass spectrometry. Four identified proteins are encoded by genes trisomic in the Ts65Dn mouse. Three of these (CRYZL11, EZR, and SOD1) were elevated with p-value <0.05, and 2 proteins encoded by disomic genes (MAPRE3 and PHB) were reduced. Intergel comparisons based on age (6 vs. 12 months) and brain region (cerebellum vs. hippocampus) revealed numerous differences. Specifically, 132 identified proteins were different between age groups, and 141 identified proteins were different between the 2 brain regions. Our results suggest that compensatory mechanisms exist, which ameliorate the effect of trisomy in the Ts65Dn mice. Differences observed during aging may play a role in the accelerated deterioration of learning and memory seen in Ts65Dn mice.
Collapse
Affiliation(s)
- Guido N Vacano
- Knoebel Institute for Healthy Aging, Eleanor Roosevelt Institute, and Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - David S Gibson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Abdullah Arif Turjoman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy W Gawryluk
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mark Duncan
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, Eleanor Roosevelt Institute, and Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
9
|
Pédron N, Artigaud S, Infante JLZ, Le Bayon N, Charrier G, Pichereau V, Laroche J. Proteomic responses of European flounder to temperature and hypoxia as interacting stressors: Differential sensitivities of populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:890-899. [PMID: 28215807 DOI: 10.1016/j.scitotenv.2017.02.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
In the context of global change, ectotherms are increasingly impacted by abiotic perturbations. Along the distribution area of a species, the populations at low latitudes are particularly exposed to temperature increase and hypoxic events. In this study, we have compared the proteomic responses in the liver of European flounder populations, by using 2-D electrophoresis. One southern peripheral population from Portugal vs two northern core populations from France, were reared in a common garden experiment. Most of the proteomic differences were observed between the two experimental conditions, a cold vs a warm and hypoxic conditions. Consistent differentiations between populations were observed in accumulation of proteins involved in the bioenergetics- and methionine-metabolisms, fatty acids transport, and amino-acid catabolism. The specific regulation of crucial enzymes like ATP-synthase and G6PDH, in the liver of the southern population, could be related to a possible local adaptation. This southern peripheral population is spatially distant from northern core populations and has experienced dissimilar ecological conditions; thus it may contain genotypes that confer resilience to climate changes.
Collapse
Affiliation(s)
- Nicolas Pédron
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Sébastien Artigaud
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - José-Luis Zambonino Infante
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Nicolas Le Bayon
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France; Ifremer, Laboratoire Adaptation, Reproduction et Nutrition des Poissons ARN, Unité de Physiologie Fonctionnelle des Organismes Marins PFOM, Plouzané, France
| | - Grégory Charrier
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Vianney Pichereau
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France
| | - Jean Laroche
- Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin LEMAR, Institut Universitaire Européen de la Mer IUEM, Plouzané, France.
| |
Collapse
|
10
|
Lautridou J, Pichereau V, Artigaud S, Bernay B, Barak O, Hoiland R, Lovering AT, Eftedal I, Dujic Z, Guerrero F. Evolution of the plasma proteome of divers before and after a single SCUBA dive. Proteomics Clin Appl 2017; 11. [PMID: 28439981 DOI: 10.1002/prca.201700016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE Decompression sickness (DCS) is a poorly understood and complex systemic disease caused by inadequate desaturation following a reduction of ambient pressure. A previous proteomic study of ours showed that DCS occurrence but not diving was associated with changes in the plasma proteome in rats, including a dramatic decrease of abundance of the tetrameric form of Transthyretin (TTR). The present study aims to assess the impact on the human blood proteome of a dive inducing significant decompression stress but without inducing DCS symptoms. EXPERIMENTAL DESIGN Twelve healthy male divers were subjected to a single dive at a depth of 18 m of sea water (msw) with a 47-min bottom time followed by a direct ascent to the surface at a rate of 9 msw/min. Venous blood was collected before the dive as well as 30 min and 2 h following the dive. The plasma proteomes from four individuals were then analyzed by using a two-dimensional electrophoresis-based proteomic strategy. RESULTS No protein spot showed a significantly changed abundance (fdr< 0.1) between the tested times. CONCLUSION These results strengthen the hypothesis according to which significant changes of the plasma proteome measurable with two-dimensional electrophoresis may only occur along with DCS symptoms.
Collapse
Affiliation(s)
- Jacky Lautridou
- Laboratoire ORPHY EA 4324, Université de Bretagne Occidentale, IBSAM, Breast, France
| | - Vianney Pichereau
- LEMAR UMR 6539, Université de Bretagne Occidentale, CNRS/UBO/IRD/IFREMER, Breast, France
| | - Sébastien Artigaud
- LEMAR UMR 6539, Université de Bretagne Occidentale, CNRS/UBO/IRD/IFREMER, Breast, France
| | - Benoit Bernay
- Proteogen SF ICORE 4206, Université de Caen, Caen, France
| | - Otto Barak
- University of Novi Sad School of Medicine, Novi Sad, Serbia
| | - Ryan Hoiland
- Okanagan Campus, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zeljko Dujic
- Dept of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - François Guerrero
- Laboratoire ORPHY EA 4324, Université de Bretagne Occidentale, IBSAM, Breast, France
| |
Collapse
|
11
|
Lautridou J, Pichereau V, Artigaud S, Buzzacott P, Wang Q, Bernay B, Driad S, Mazur A, Lambrechts K, Théron M, Guerrero F. Effect of simulated air dive and decompression sickness on the plasma proteome of rats. Proteomics Clin Appl 2016; 10:614-20. [DOI: 10.1002/prca.201600017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 04/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jacky Lautridou
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Vianney Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer; Université de Bretagne Occidentale; Brest France
| | - Sébastien Artigaud
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer; Université de Bretagne Occidentale; Brest France
| | - Peter Buzzacott
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Qiong Wang
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Benoit Bernay
- Proteogen SFR ICORE 4206; Université de Caen; Caen France
| | - Sabrina Driad
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Aleksandra Mazur
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Kate Lambrechts
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - Michael Théron
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| | - François Guerrero
- Laboratoire ORPHY EA 4324; Université de Bretagne Occidentale; Brest France
| |
Collapse
|
12
|
Silva TS, Richard N. Visualization and Differential Analysis of Protein Expression Data Using R. Methods Mol Biol 2016; 1362:105-18. [PMID: 26519172 DOI: 10.1007/978-1-4939-3106-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Data analysis is essential to derive meaningful conclusions from proteomic data. This chapter describes ways of performing common data visualization and differential analysis tasks on gel-based proteomic datasets using a freely available statistical software package (R). A workflow followed is illustrated using a synthetic dataset as example.
Collapse
Affiliation(s)
- Tomé S Silva
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221, Olhão, Portugal.
| | - Nadège Richard
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
13
|
Jung K. Statistical Aspects in Proteomic Biomarker Discovery. Methods Mol Biol 2016; 1362:293-310. [PMID: 26519185 DOI: 10.1007/978-1-4939-3106-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the pursuit of a personalized medicine, i.e., the individual treatment of a patient, many medical decision problems are desired to be supported by biomarkers that can help to make a diagnosis, prediction, or prognosis. Proteomic biomarkers are of special interest since they can not only be detected in tissue samples but can also often be easily detected in diverse body fluids. Statistical methods play an important role in the discovery and validation of proteomic biomarkers. They are necessary in the planning of experiments, in the processing of raw signals, and in the final data analysis. This review provides an overview on the most frequent experimental settings including sample size considerations, and focuses on exploratory data analysis and classifier development.
Collapse
Affiliation(s)
- Klaus Jung
- Department of Medical Statistics, Georg-August-University Göttingen, Humboldtallee 32, 37073, Göttingen, Germany.
| |
Collapse
|
14
|
Artigaud S, Richard J, Thorne MAS, Lavaud R, Flye-Sainte-Marie J, Jean F, Peck LS, Clark MS, Pichereau V. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genomics 2015; 16:988. [PMID: 26596422 PMCID: PMC4657243 DOI: 10.1186/s12864-015-2132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. RESULTS Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. CONCLUSIONS This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans.
Collapse
Affiliation(s)
- Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Joëlle Richard
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Romain Lavaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| |
Collapse
|
15
|
Landry BD, Clarke DC, Lee MJ. Studying Cellular Signal Transduction with OMIC Technologies. J Mol Biol 2015; 427:3416-40. [PMID: 26244521 PMCID: PMC4818567 DOI: 10.1016/j.jmb.2015.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly non-linear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and "OMIC" approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the "signal" can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases, signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the "right" experiments and the "right" modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology.
Collapse
Affiliation(s)
- Benjamin D Landry
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David C Clarke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | - Michael J Lee
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Artigaud S, Lacroix C, Richard J, Flye-Sainte-Marie J, Bargelloni L, Pichereau V. Proteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus). PeerJ 2015; 3:e871. [PMID: 25861557 PMCID: PMC4389274 DOI: 10.7717/peerj.871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced by hypoxia in animals acclimated at 10 °C. At 18 °C and 25 °C, 16 and 11 protein spots were differentially accumulated between normoxia and hypoxia, respectively. Moreover, biochemical data (octopine dehydrogenase activity and arginine assays) suggest that animals grown at 25 °C switched their metabolism towards anaerobic metabolism when exposed to both normoxia and hypoxia, suggesting that this temperature is out of the scallops’ optimal thermal window. The 11 proteins identified with high confidence by mass spectrometry are involved in protein modifications and signaling (e.g., CK2, TBK1), energy metabolism (e.g., ENO3) or cytoskeleton (GSN), giving insights into the thermal-dependent response of scallops to hypoxia.
Collapse
Affiliation(s)
- Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer , Plouzané , France
| | - Camille Lacroix
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer , Plouzané , France
| | - Joëlle Richard
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer , Plouzané , France
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer , Plouzané , France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16, Legnaro , Padova , Italy
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer , Plouzané , France
| |
Collapse
|
17
|
Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. J Proteomics 2015; 119:143-53. [PMID: 25688916 DOI: 10.1016/j.jprot.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine resulting in significant reductions in yield and fruit quality. In order to examine the molecular mechanisms that characterize the interaction between B. cinerea and the host plant, the grapevine cytoplasmic proteome was analyzed by two-dimensional polyacrylamide gel electrophoresis. The interaction between Vitis vinifera cv. Gamay cells and B. cinerea was characterized by the increase in spot abundance of 30 proteins, of which 21 were successfully identified. The majority of these proteins were related to defence and stress responses and to cell wall modifications. Some of the modulated proteins have been previously found to be affected by other pathogens when they infect V. vinifera but interestingly, the proteins related to cell wall modification that were influenced by B. cinerea have not been shown to be modulated by any other pathogen studied to date. Transcript analysis using the quantitative real time polymerase chain reaction additionally revealed the up-regulation of several acidic, probably extracellular, chitinases. The results indicate that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are likely to be important mechanisms in the defence of grapevine against B. cinerea. BIOLOGICAL SIGNIFICANCE Although gray mold caused by Botrytis cinerea is one of the most important diseases of grapevine, little information is available about proteomic changes in this pathosystem. These results suggest that cell wall strengthening, accumulation of PR proteins and excretion of lytic enzymes are important molecular mechanisms in the defence of grapevine against B. cinerea. Surprisingly, the proteins related to cell wall modification that were modulated by B. cinerea have not been shown to be affected by any other pathogen studied to date.
Collapse
|
18
|
Proteomic-based comparison between populations of the Great Scallop, Pecten maximus. J Proteomics 2014; 105:164-73. [PMID: 24704858 DOI: 10.1016/j.jprot.2014.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. BIOLOGICAL SIGNIFICANCE Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
|