1
|
Abbas S, Asif M, Rehman A, Alharbi M, Khan MA, Elmitwally N. Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review. Heliyon 2024; 10:e36743. [PMID: 39263113 PMCID: PMC11387343 DOI: 10.1016/j.heliyon.2024.e36743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
This review article offers a comprehensive analysis of current developments in the application of machine learning for cancer diagnostic systems. The effectiveness of machine learning approaches has become evident in improving the accuracy and speed of cancer detection, addressing the complexities of large and intricate medical datasets. This review aims to evaluate modern machine learning techniques employed in cancer diagnostics, covering various algorithms, including supervised and unsupervised learning, as well as deep learning and federated learning methodologies. Data acquisition and preprocessing methods for different types of data, such as imaging, genomics, and clinical records, are discussed. The paper also examines feature extraction and selection techniques specific to cancer diagnosis. Model training, evaluation metrics, and performance comparison methods are explored. Additionally, the review provides insights into the applications of machine learning in various cancer types and discusses challenges related to dataset limitations, model interpretability, multi-omics integration, and ethical considerations. The emerging field of explainable artificial intelligence (XAI) in cancer diagnosis is highlighted, emphasizing specific XAI techniques proposed to improve cancer diagnostics. These techniques include interactive visualization of model decisions and feature importance analysis tailored for enhanced clinical interpretation, aiming to enhance both diagnostic accuracy and transparency in medical decision-making. The paper concludes by outlining future directions, including personalized medicine, federated learning, deep learning advancements, and ethical considerations. This review aims to guide researchers, clinicians, and policymakers in the development of efficient and interpretable machine learning-based cancer diagnostic systems.
Collapse
Affiliation(s)
- Sagheer Abbas
- Department of Computer Science, Prince Mohammad Bin Fahd University, Al-Khobar, KSA
| | - Muhammad Asif
- Department of Computer Science, Education University Lahore, Attock Campus, Pakistan
| | - Abdur Rehman
- School of Computer Science, National College of Business Administration and Economics, Lahore, 54000, Pakistan
| | - Meshal Alharbi
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Muhammad Adnan Khan
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
- School of Computing, Skyline University College, University City Sharjah, 1797, Sharjah, United Arab Emirates
- Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Nouh Elmitwally
- Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt
- School of Computing and Digital Technology, Birmingham City University, Birmingham, B4 7XG, UK
| |
Collapse
|
2
|
Cacciamani GE, Chen A, Gill IS, Hung AJ. Artificial intelligence and urology: ethical considerations for urologists and patients. Nat Rev Urol 2024; 21:50-59. [PMID: 37524914 DOI: 10.1038/s41585-023-00796-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
The use of artificial intelligence (AI) in medicine and in urology specifically has increased over the past few years, during which time it has enabled optimization of patient workflow, increased diagnostic accuracy and enhanced computer analysis of radiological and pathological images. However, before further use of AI is undertaken, possible ethical issues need to be evaluated to improve understanding of this technology and to protect patients and providers. Possible ethical issues that require consideration when applying AI in clinical practice include patient safety, cybersecurity, transparency and interpretability of the data, inclusivity and equity, fostering responsibility and accountability, and the preservation of providers' decision-making and autonomy. Ethical principles for the application of AI to health care and in urology are proposed to guide urologists, patients and regulators to improve use of AI technologies and guide policy-making.
Collapse
Affiliation(s)
- Giovanni E Cacciamani
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA.
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Andrew Chen
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S Gill
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Hung
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
A survey of evolutionary algorithms for supervised ensemble learning. KNOWL ENG REV 2023. [DOI: 10.1017/s0269888923000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Abstract
This paper presents a comprehensive review of evolutionary algorithms that learn an ensemble of predictive models for supervised machine learning (classification and regression). We propose a detailed four-level taxonomy of studies in this area. The first level of the taxonomy categorizes studies based on which stage of the ensemble learning process is addressed by the evolutionary algorithm: the generation of base models, model selection, or the integration of outputs. The next three levels of the taxonomy further categorize studies based on methods used to address each stage. In addition, we categorize studies according to the main types of objectives optimized by the evolutionary algorithm, the type of base learner used and the type of evolutionary algorithm used. We also discuss controversial topics, like the pros and cons of the selection stage of ensemble learning, and the need for using a diversity measure for the ensemble’s members in the fitness function. Finally, as conclusions, we summarize our findings about patterns in the frequency of use of different methods and suggest several new research directions for evolutionary ensemble learning.
Collapse
|
4
|
Sharma A, Virmani T, Pathak V, Sharma A, Pathak K, Kumar G, Pathak D. Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7205241. [PMID: 35845955 PMCID: PMC9279074 DOI: 10.1155/2022/7205241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
The global COVID-19 (coronavirus disease 2019) pandemic, which was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a significant loss of human life around the world. The SARS-CoV-2 has caused significant problems to medical systems and healthcare facilities due to its unexpected global expansion. Despite all of the efforts, developing effective treatments, diagnostic techniques, and vaccinations for this unique virus is a top priority and takes a long time. However, the foremost step in vaccine development is to identify possible antigens for a vaccine. The traditional method was time taking, but after the breakthrough technology of reverse vaccinology (RV) was introduced in 2000, it drastically lowers the time needed to detect antigens ranging from 5-15 years to 1-2 years. The different RV tools work based on machine learning (ML) and artificial intelligence (AI). Models based on AI and ML have shown promising solutions in accelerating the discovery and optimization of new antivirals or effective vaccine candidates. In the present scenario, AI has been extensively used for drug and vaccine research against SARS-COV-2 therapy discovery. This is more useful for the identification of potential existing drugs with inhibitory human coronavirus by using different datasets. The AI tools and computational approaches have led to speedy research and the development of a vaccine to fight against the coronavirus. Therefore, this paper suggests the role of artificial intelligence in the field of clinical trials of vaccines and clinical practices using different tools.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121102, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121102, India
| | - Vipluv Pathak
- GL Bajaj Institute of Technology and Management, Greater Noida, Uttar Pradesh, India
| | | | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh 206001, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121102, India
| | - Devender Pathak
- Rajiv Academy for Pharmacy, NH. #2, Mathura Delhi Road P.O, Chhatikara, Mathura, Uttar Pradesh 281001, India
| |
Collapse
|
5
|
Artificial intelligence perspective in the future of endocrine diseases. J Diabetes Metab Disord 2022; 21:971-978. [PMID: 35673469 PMCID: PMC9167325 DOI: 10.1007/s40200-021-00949-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023]
Abstract
In recent years, artificial intelligence (AI) shows promising results in the diagnosis, prediction, and management of diseases. The move from handwritten medical notes to electronic health records and a huge number of digital data commenced in the era of big data in medicine. AI can improve physician performance and help better clinical decision making which is called augmented intelligence. The methods applied in the research of AI and endocrinology include machine learning, artificial neural networks, and natural language processing. Current research in AI technology is making major efforts to improve decision support systems for patient use. One of the best-known applications of AI in endocrinology was seen in diabetes management, which includes prediction, diagnosis of diabetes complications (measuring microalbuminuria, retinopathy), and glycemic control. AI-related technologies are being found to assist in the diagnosis of other endocrine diseases such as thyroid cancer and osteoporosis. This review attempts to provide insight for the development of prospective for AI with a focus on endocrinology.
Collapse
|
6
|
|
7
|
Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R, Malik K, Raza S, Abbas A, Pezzani R, Sharifi-Rad J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int 2021; 21:270. [PMID: 34020642 PMCID: PMC8139146 DOI: 10.1186/s12935-021-01981-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Zeeshan Javed
- Office for Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | | | - Asma Irshad
- Department of Life Sciences, University of Management Sciences and Technology, Lahore, Pakistan
| | - Rais Ahmed
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Kausar Malik
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asif Abbas
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Raffaele Pezzani
- Dept. Medicine (DIMED), OU Endocrinology, University of Padova, via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
8
|
The Application of Artificial Intelligence in Prostate Cancer Management—What Improvements Can Be Expected? A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence (AI) is progressively remodeling our daily life. A large amount of information from “big data” now enables machines to perform predictions and improve our healthcare system. AI has the potential to reshape prostate cancer (PCa) management thanks to growing applications in the field. The purpose of this review is to provide a global overview of AI in PCa for urologists, pathologists, radiotherapists, and oncologists to consider future changes in their daily practice. A systematic review was performed, based on PubMed MEDLINE, Google Scholar, and DBLP databases for original studies published in English from January 2009 to January 2019 relevant to PCa, AI, Machine Learning, Artificial Neural Networks, Convolutional Neural Networks, and Natural-Language Processing. Only articles with full text accessible were considered. A total of 1008 articles were reviewed, and 48 articles were included. AI has potential applications in all fields of PCa management: analysis of genetic predispositions, diagnosis in imaging, and pathology to detect PCa or to differentiate between significant and non-significant PCa. AI also applies to PCa treatment, whether surgical intervention or radiotherapy, skills training, or assessment, to improve treatment modalities and outcome prediction. AI in PCa management has the potential to provide a useful role by predicting PCa more accurately, using a multiomic approach and risk-stratifying patients to provide personalized medicine.
Collapse
|
9
|
Attanasio S, Forte SM, Restante G, Gabelloni M, Guglielmi G, Neri E. Artificial intelligence, radiomics and other horizons in body composition assessment. Quant Imaging Med Surg 2020; 10:1650-1660. [PMID: 32742958 PMCID: PMC7378090 DOI: 10.21037/qims.2020.03.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
This paper offers a brief overview of common non-invasive techniques for body composition assessment methods, and of the way images extracted by these methods can be processed with artificial intelligence (AI) and radiomic analysis. These new techniques are becoming more and more appealing in the field of health care, thanks to their ability to treat and process a huge amount of data, suggest new correlations between extracted imaging biomarkers and traits of several diseases as well as lead to the possibility to realise an increasingly personalized medicine. The idea is to suggest the use of AI applications and radiomic analysis to search for features that may be extracted from medical images [computed tomography (CT) and magnetic resonance imaging (MRI)], and that may turn out to be good predictors of metabolic disorder diseases and cancer. This could lead to patient-specific treatments and management of several diseases linked with excessive body fat.
Collapse
Affiliation(s)
- Simona Attanasio
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Sara Maria Forte
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Michela Gabelloni
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuele Neri
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:332-341. [PMID: 30578915 PMCID: PMC6364045 DOI: 10.1016/j.gpb.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
In mammalian cells, transcribed enhancers (TrEns) play important roles in the initiation of gene expression and maintenance of gene expression levels in a spatiotemporal manner. One of the most challenging questions is how the genomic characteristics of enhancers relate to enhancer activities. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers’ DNA code in a more systematic way. To address this problem, we developed a novel computational framework, Transcribed Enhancer Landscape Search (TELS), aimed at identifying predictive cell type/tissue-specific motif signatures of TrEns. As a case study, we used TELS to compile a comprehensive catalog of motif signatures for all known TrEns identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that combinations of different short motifs characterize in an optimized manner cell type/tissue-specific TrEns. Our study is the first to report combinations of motifs that maximize classification performance of TrEns exclusively transcribed in one cell type/tissue from TrEns exclusively transcribed in different cell types/tissues. Moreover, we also report 31 motif signatures predictive of enhancers’ broad activity. TELS codes and material are publicly available at http://www.cbrc.kaust.edu.sa/TELS.
Collapse
|
11
|
Abstract
Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
Collapse
Affiliation(s)
- Pavel Hamet
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9; Department of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 3J7.
| | - Johanne Tremblay
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9; Department of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 3J7.
| |
Collapse
|
12
|
Masica DL, Karchin R. Towards Increasing the Clinical Relevance of In Silico Methods to Predict Pathogenic Missense Variants. PLoS Comput Biol 2016; 12:e1004725. [PMID: 27171182 PMCID: PMC4865359 DOI: 10.1371/journal.pcbi.1004725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- David L. Masica
- Department of Biomedical Engineering and The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rachel Karchin
- Department of Biomedical Engineering and The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|