1
|
Musuamba FT, Skottheim Rusten I, Lesage R, Russo G, Bursi R, Emili L, Wangorsch G, Manolis E, Karlsson KE, Kulesza A, Courcelles E, Boissel JP, Rousseau CF, Voisin EM, Alessandrello R, Curado N, Dall'ara E, Rodriguez B, Pappalardo F, Geris L. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:804-825. [PMID: 34102034 PMCID: PMC8376137 DOI: 10.1002/psp4.12669] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
The value of in silico methods in drug development and evaluation has been demonstrated repeatedly and convincingly. While their benefits are now unanimously recognized, international standards for their evaluation, accepted by all stakeholders involved, are still to be established. In this white paper, we propose a risk‐informed evaluation framework for mechanistic model credibility evaluation. To properly frame the proposed verification and validation activities, concepts such as context of use, regulatory impact and risk‐based analysis are discussed. To ensure common understanding between all stakeholders, an overview is provided of relevant in silico terminology used throughout this paper. To illustrate the feasibility of the proposed approach, we have applied it to three real case examples in the context of drug development, using a credibility matrix currently being tested as a quick‐start tool by regulators. Altogether, this white paper provides a practical approach to model evaluation, applicable in both scientific and regulatory evaluation contexts.
Collapse
Affiliation(s)
- Flora T Musuamba
- EMA Modelling and Simulation Working Party, Amsterdam, The Netherlands.,Federal Agency for Medicines and Health Products, Brussels, Belgium.,Faculté des Sciences Pharmaceutiques, Université de Lubumbashi, Lubumbashi, Congo
| | - Ine Skottheim Rusten
- EMA Modelling and Simulation Working Party, Amsterdam, The Netherlands.,Norvegian Medicines Agency, Oslo, Norway
| | - Raphaëlle Lesage
- Biomechanics Section, KU Leuven, Leuven, Belgium.,Virtual Physiological Human Institute, Leuven, Belgium
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Luca Emili
- InSilicoTrials Technologies, Milano, Italy
| | - Gaby Wangorsch
- EMA Modelling and Simulation Working Party, Amsterdam, The Netherlands.,Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Efthymios Manolis
- EMA Modelling and Simulation Working Party, Amsterdam, The Netherlands.,European Medicines Agency, Amsterdam, The Netherlands
| | - Kristin E Karlsson
- EMA Modelling and Simulation Working Party, Amsterdam, The Netherlands.,Swedish Medical Products Agency, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | | | - Liesbet Geris
- Biomechanics Section, KU Leuven, Leuven, Belgium.,Virtual Physiological Human Institute, Leuven, Belgium.,GIGA In silico Medicine, Université de Liège, Liège, Belgium
| |
Collapse
|
2
|
The BET inhibitor CPI203 promotes ex vivo expansion of cord blood long-term repopulating HSCs and megakaryocytes. Blood 2021; 136:2410-2415. [PMID: 32599615 DOI: 10.1182/blood.2020005357] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.
Collapse
|
3
|
Russo G, Pennisi M, Fichera E, Motta S, Raciti G, Viceconti M, Pappalardo F. In silico trial to test COVID-19 candidate vaccines: a case study with UISS platform. BMC Bioinformatics 2020; 21:527. [PMID: 33308153 PMCID: PMC7733700 DOI: 10.1186/s12859-020-03872-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background SARS-CoV-2 is a severe respiratory infection that infects humans. Its outburst entitled it as a pandemic emergence. To get a grip on this outbreak, specific preventive and therapeutic interventions are urgently needed. It must be said that, until now, there are no existing vaccines for coronaviruses. To promptly and rapidly respond to pandemic events, the application of in silico trials can be used for designing and testing medicines against SARS-CoV-2 and speed-up the vaccine discovery pipeline, predicting any therapeutic failure and minimizing undesired effects. Results We present an in silico platform that showed to be in very good agreement with the latest literature in predicting SARS-CoV-2 dynamics and related immune system host response. Moreover, it has been used to predict the outcome of one of the latest suggested approach to design an effective vaccine, based on monoclonal antibody. Universal Immune System Simulator (UISS) in silico platform is potentially ready to be used as an in silico trial platform to predict the outcome of vaccination strategy against SARS-CoV-2. Conclusions In silico trials are showing to be powerful weapons in predicting immune responses of potential candidate vaccines. Here, UISS has been extended to be used as an in silico trial platform to speed-up and drive the discovery pipeline of vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Marzio Pennisi
- Computer Science Institute, DiSIT, University of Eastern Piedmont, 15125, Alessandria, Italy
| | | | - Santo Motta
- National Research Council of Italy, 00185, Rome, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, University of Catania, 95125, Catania, Italy.
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, 40136, Bologna, Italy
| | | |
Collapse
|
4
|
Zhang Z, Zheng Q, Liu Y, Sun L, Han P, Wang R, Zhao J, Hu S, Zhao X. Human CD133-positive hematopoietic progenitor cells enhance the malignancy of breast cancer cells. BMC Cancer 2020; 20:1158. [PMID: 33243165 PMCID: PMC7690192 DOI: 10.1186/s12885-020-07633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human CD133+ hematopoietic progenitor cells (HPCs) are a specific subset of cells that can regulate tumor malignancy. However, the mechanism by which CD133+ HPCs affect the malignancy of human breast cancer has not been reported. METHODS CD133+ HPCs were isolated and purified from human umbilical cord blood (UCB). We used in vitro culture of MCF-7 and MDA-MB-231 cell lines, and MCF-7 and MDA-MB-231 cells in nude mice to evaluate whether CD133+ HPCs affected the apoptosis, proliferation, invasion and epithelial mesenchymal transition EMT of breast cancer cells. RESULTS Co-culture with CD133+ HPCs, but not UCB CD133- cells, promoted the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells, accompanied by reducing in vitro spontaneous apoptosis. Co-administration of these two lines with CD133+ HPCs significantly enhanced the growth of implanted breast cancer in vivo. Furthermore, co-culture with CD133+ HPCs, enhanced the invasion of breast cancer cells, N-cadherin and Vimentin expression, but reduced E-cadherin expression in breast cancer cells. CONCLUSIONS Our study demonstrated that CD133+ HPCs enhance the malignancy of breast cancer cells by attenuating spontaneous apoptosis and promoting the process of epithelial mesenchymal transition. These findings may provide new insights into the role of human CD133+ HPCs in breast cancer pathogenesis. Therefore, CD133+ HPCs may be a new therapeutic target for inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinglian Zheng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yonghui Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lianqing Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Pingping Han
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiao Zhao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shan Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
5
|
Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico clinical trials: concepts and early adoptions. Brief Bioinform 2020; 20:1699-1708. [PMID: 29868882 DOI: 10.1093/bib/bby043] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Innovations in information and communication technology infuse all branches of science, including life sciences. Nevertheless, healthcare is historically slow in adopting technological innovation, compared with other industrial sectors. In recent years, new approaches in modelling and simulation have started to provide important insights in biomedicine, opening the way for their potential use in the reduction, refinement and partial substitution of both animal and human experimentation. In light of this evidence, the European Parliament and the United States Congress made similar recommendations to their respective regulators to allow wider use of modelling and simulation within the regulatory process. In the context of in silico medicine, the term 'in silico clinical trials' refers to the development of patient-specific models to form virtual cohorts for testing the safety and/or efficacy of new drugs and of new medical devices. Moreover, it could be envisaged that a virtual set of patients could complement a clinical trial (reducing the number of enrolled patients and improving statistical significance), and/or advise clinical decisions. This article will review the current state of in silico clinical trials and outline directions for a full-scale adoption of patient-specific modelling and simulation in the regulatory evaluation of biomedical products. In particular, we will focus on the development of vaccine therapies, which represents, in our opinion, an ideal target for this innovative approach.
Collapse
Affiliation(s)
| | - Giulia Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Flora Musuamba Tshinanu
- Federal Agency for Medicines and Health Products, Brussels, Belgium and INSERM U1248, Université de Limoges, Limoges, France
| | - Marco Viceconti
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Pennisi M, Russo G, Sgroi G, Bonaccorso A, Parasiliti Palumbo GA, Fichera E, Mitra DK, Walker KB, Cardona PJ, Amat M, Viceconti M, Pappalardo F. Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS). BMC Bioinformatics 2019; 20:504. [PMID: 31822272 PMCID: PMC6904993 DOI: 10.1186/s12859-019-3045-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world's population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project "In Silico Trial for Tuberculosis Vaccine Development" (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare. RESULTS We present the application of the Universal Immune System Simulator (UISS) computational modeling infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third represents the latent chronic disease infection scenario during RUTI® vaccine administration. CONCLUSIONS The application of this computational modeling strategy helpfully contributes to simulate those mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting and guiding the testing of treatments in patients affected by tuberculosis.
Collapse
Affiliation(s)
- Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| | - Giulia Russo
- Department of Drug Sciences, University of Catania, Italy, 95125 Catania, Italy
| | - Giuseppe Sgroi
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| | - Angela Bonaccorso
- Department of Drug Sciences, University of Catania, Italy, 95125 Catania, Italy
| | | | | | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Kenneth B. Walker
- TuBerculosis Vaccine Initiative (TBVI), Lelystad, 8219 The Netherlands
| | - Pere-Joan Cardona
- Archivel Farma, S.L, 08916 Badalona, Spain
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Merce Amat
- Archivel Farma, S.L, 08916 Badalona, Spain
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy
| | | |
Collapse
|
7
|
Pagliuca S, Ruggeri A, Peffault de Latour R. Cord blood transplantation for bone marrow failure syndromes: state of art. Stem Cell Investig 2019; 6:39. [PMID: 32039261 DOI: 10.21037/sci.2019.10.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) represent the milestones of the treatment algorithm for idiopathic and inherited bone marrow failure (BMF) disorders. However, patients lacking a suitable donor or failing IST still have a poor prognosis. Cord blood transplantation (CBT) has extended the possibility of HSCT for many patients in case of the absence of an eligible donor, and although in the last years, this procedure is less used in several hematological diseases, it remains an option for the treatment of patients with BMF syndromes. Nevertheless, optimization of conditioning regimen and cord blood unit selection is warranted to reduce the risk of graft failure and transplant-related mortality. This review summarizes the state of art of CBT in the field of BMF diseases, focusing on historical and recent issues in idiopathic aplastic anemia and inherited disorders.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology and Transplantation Unit, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annalisa Ruggeri
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.,Eurocord-Monacord, Hôpital Saint Louis, Paris, France.,Cellular Therapy and Immunobiology Working Party of EBMT, Leiden, The Netherlands
| | - Régis Peffault de Latour
- Hematology and Transplantation Unit, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
8
|
Mata MF, Hernandez D, Rologi E, Grandolfo D, Hassan E, Hua P, Kallmeier R, Hirani S, Heuts F, Tittrea V, Choo Y, Baradez MO, Watt SM, Tarunina M. A modified CD34+ hematopoietic stem and progenitor cell isolation strategy from cryopreserved human umbilical cord blood. Transfusion 2019; 59:3560-3569. [PMID: 31769050 DOI: 10.1111/trf.15597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.
Collapse
Affiliation(s)
- Marcia F Mata
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK.,Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Evangelia Rologi
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Davide Grandolfo
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Enas Hassan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Peng Hua
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK.,MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe, Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Kallmeier
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Swatisha Hirani
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Frank Heuts
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Vickram Tittrea
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, UK.,Lee Kong Chian School of Medicine, 11 Mandalay Road, 3082322, Singapore
| | - Marc-Olivier Baradez
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, London, UK
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
9
|
Chen R, Li L, Feng L, Luo Y, Xu M, Leong KW, Yao R. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials 2019; 230:119627. [PMID: 31767445 DOI: 10.1016/j.biomaterials.2019.119627] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Cell therapy, the treatment of diseases using living cells, offers a promising clinical approach to treating refractory diseases. The global market for cell therapy is growing rapidly, and there is an increasing demand for automated methods that can produce large quantities of high quality therapeutic cells. Biomaterials can be used during cell production to establish a biomimetic microenvironment that promotes cell adhesion and proliferation while maintaining target cell genotype and phenotype. Here we review recent progress and emerging techniques in biomaterial-assisted cell production. The increasing use of auxiliary biomaterials and automated production methods provides an opportunity to improve quality control and increase production efficiency using standardized GMP-compliant procedures.
Collapse
Affiliation(s)
- Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ling Li
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Smalley I, Kim E, Li J, Spence P, Wyatt CJ, Eroglu Z, Sondak VK, Messina JL, Babacan NA, Maria-Engler SS, De Armas L, Williams SL, Gatenby RA, Chen YA, Anderson ARA, Smalley KSM. Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. EBioMedicine 2019; 48:178-190. [PMID: 31594749 PMCID: PMC6838387 DOI: 10.1016/j.ebiom.2019.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Melanoma is a heterogeneous tumour, but the impact of this heterogeneity upon therapeutic response is not well understood. METHODS Single cell mRNA analysis was used to define the transcriptional heterogeneity of melanoma and its dynamic response to BRAF inhibitor therapy and treatment holidays. Discrete transcriptional states were defined in cell lines and melanoma patient specimens that predicted initial sensitivity to BRAF inhibition and the potential for effective re-challenge following resistance. A mathematical model was developed to maintain competition between the drug-sensitive and resistant states, which was validated in vivo. FINDINGS Our analyses showed melanoma cell lines and patient specimens to be composed of >3 transcriptionally distinct states. The cell state composition was dynamically regulated in response to BRAF inhibitor therapy and drug holidays. Transcriptional state composition predicted for therapy response. The differences in fitness between the different transcriptional states were leveraged to develop a mathematical model that optimized therapy schedules to retain the drug sensitive population. In vivo validation demonstrated that the personalized adaptive dosing schedules outperformed continuous or fixed intermittent BRAF inhibitor schedules. INTERPRETATION Our study provides the first evidence that transcriptional heterogeneity at the single cell level predicts for initial BRAF inhibitor sensitivity. We further demonstrate that manipulating transcriptional heterogeneity through personalized adaptive therapy schedules can delay the time to resistance. FUNDING This work was funded by the National Institutes of Health. The funder played no role in assembly of the manuscript.
Collapse
Affiliation(s)
- Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Eunjung Kim
- Department of Integrated Mathematical Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paige Spence
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Clayton J Wyatt
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jane L Messina
- Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; Department of Anatomic Pathology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Nalan Akgul Babacan
- Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Silvya Stuchi Maria-Engler
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Brazil
| | - Lesley De Armas
- Sylvester Comprehensive Cancer Center, The University of Miami, Miami, FL, USA
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, The University of Miami, Miami, FL, USA
| | - Robert A Gatenby
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y Ann Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
11
|
Hua P, Kronsteiner B, van der Garde M, Ashley N, Hernandez D, Tarunina M, Hook L, Choo Y, Roberts I, Mead A, Watt SM. Single-cell assessment of transcriptome alterations induced by Scriptaid in early differentiated human haematopoietic progenitors during ex vivo expansion. Sci Rep 2019; 9:5300. [PMID: 30923342 PMCID: PMC6438964 DOI: 10.1038/s41598-019-41803-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
Priming haematopoietic stem/progenitor cells (HSPCs) in vitro with specific chromatin modifying agents and cytokines under serum-free-conditions significantly enhances engraftable HSC numbers. We extend these studies by culturing human CD133+ HSPCs on nanofibre scaffolds to mimic the niche for 5-days with the HDAC inhibitor Scriptaid and cytokines. Scriptaid increases absolute Lin−CD34+CD38−CD45RA−CD90+CD49f+ HSPC numbers, while concomitantly decreasing the Lin−CD38−CD34+CD45RA−CD90− subset. Hypothesising that Scriptaid plus cytokines expands the CD90+ subset without differentiation and upregulates CD90 on CD90− cells, we sorted, then cultured Lin−CD34+CD38−CD45RA−CD90− cells with Scriptaid and cytokines. Within 2-days and for at least 5-days, most CD90− cells became CD90+. There was no significant difference in the transcriptomic profile, by RNAsequencing, between cytokine-expanded and purified Lin−CD34+CD38−CD45RA−CD49f+CD90+ cells in the presence or absence of Scriptaid, suggesting that Scriptaid maintains stem cell gene expression programs despite expansion in HSC numbers. Supporting this, 50 genes were significantly differentially expressed between CD90+ and CD90− Lin−CD34+CD38−CD45RA−CD49f+ subsets in Scriptaid-cytokine- and cytokine only-expansion conditions. Thus, Scriptaid treatment of CD133+ cells may be a useful approach to expanding the absolute number of CD90+ HSC, without losing their stem cell characteristics, both through direct effects on HSC and potentially also conversion of their immediate CD90− progeny into CD90+ HSC.
Collapse
Affiliation(s)
- Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Barbara Kronsteiner
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Mark van der Garde
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Marina Tarunina
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Lilian Hook
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Adam Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK.
| |
Collapse
|
12
|
Mahadik B, Hannon B, Harley BAC. A computational model of feedback-mediated hematopoietic stem cell differentiation in vitro. PLoS One 2019; 14:e0212502. [PMID: 30822334 PMCID: PMC6396932 DOI: 10.1371/journal.pone.0212502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) play an important physiological role as regulators of all blood and immune cell populations, and are of clinical importance for bone marrow transplants. Regulating HSC biology in vitro for clinical applications requires improved understanding of biological inducers of HSC lineage specification. A significant challenge for controlled HSC expansion and differentiation is the complex network of molecular crosstalk between multiple bone marrow niche components influencing HSC biology. We describe a biology-driven computational approach to model cell kinetics in vitro to gain new insight regarding culture conditions and intercellular signaling networks. We further investigate the balance between self-renewal and differentiation that drives early and late hematopoietic progenitor populations. We demonstrate that changing the feedback driven by cell-secreted biomolecules alters lineage specification in early progenitor populations. Using a first order deterministic model, we are able to predict the impact of media change frequency on cell kinetics, as well as distinctions between primitive long-term HSCs and differentiated myeloid progenitors. Integrating the computational model and sensitivity analyses we identify critical culture parameters for regulating HSC proliferation and myeloid lineage specification. Our analysis suggests that accurately modeling the kinetics of hematopoietic sub-populations in vitro requires direct contributions from early progenitor differentiation along with the more traditionally considered intermediary oligopotent progenitors. While consistent with recent in vivo results, this work suggests the need to revise our perspective on HSC lineage engineering in vitro for expansion of discrete hematopoietic populations.
Collapse
Affiliation(s)
- Bhushan Mahadik
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bruce Hannon
- Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brendan A. C. Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Read MN, Alden K, Timmis J, Andrews PS. Strategies for calibrating models of biology. Brief Bioinform 2018; 21:24-35. [PMID: 30239570 DOI: 10.1093/bib/bby092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 11/14/2022] Open
Abstract
Computational and mathematical modelling has become a valuable tool for investigating biological systems. Modelling enables prediction of how biological components interact to deliver system-level properties and extrapolation of biological system performance to contexts and experimental conditions where this is unknown. A model's value hinges on knowing that it faithfully represents the biology under the contexts of use, or clearly ascertaining otherwise and thus motivating further model refinement. These qualities are evaluated through calibration, typically formulated as identifying model parameter values that align model and biological behaviours as measured through a metric applied to both. Calibration is critical to modelling but is often underappreciated. A failure to appropriately calibrate risks unrepresentative models that generate erroneous insights. Here, we review a suite of strategies to more rigorously challenge a model's representation of a biological system. All are motivated by features of biological systems, and illustrative examples are drawn from the modelling literature. We examine the calibration of a model against distributions of biological behaviours or outcomes, not only average values. We argue for calibration even where model parameter values are experimentally ascertained. We explore how single metrics can be non-distinguishing for complex systems, with multiple-component dynamic and interaction configurations giving rise to the same metric output. Under these conditions, calibration is insufficiently constraining and the model non-identifiable: multiple solutions to the calibration problem exist. We draw an analogy to curve fitting and argue that calibrating a biological model against a single experiment or context is akin to curve fitting against a single data point. Though useful for communicating model results, we explore how metrics that quantify heavily emergent properties may not be suitable for use in calibration. Lastly, we consider the role of sensitivity and uncertainty analysis in calibration and the interpretation of model results. Our goal in this manuscript is to encourage a deeper consideration of calibration, and how to increase its capacity to either deliver faithful models or demonstrate them otherwise.
Collapse
Affiliation(s)
| | | | | | - Paul S Andrews
- SimOmics Ltd, Suite 10 IT Centre, Innovation Way, York, UK
| |
Collapse
|
14
|
Russo G, Pennisi M, Boscarino R, Pappalardo F. Continuous Petri Nets and microRNA Analysis in Melanoma. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1492-1499. [PMID: 28767374 DOI: 10.1109/tcbb.2017.2733529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Personalized target therapies represent one of the possible treatment strategies to fight the ongoing battle against cancer. New treatment interventions are still needed for an effective and successful cancer therapy. In this scenario, we simulated and analyzed the dynamics of BRAF V600E melanoma patients treated with BRAF inhibitors in order to find potentially interesting targets that may make standard treatments more effective in particularly aggressive tumors that may not respond to selective inhibitor drugs. To this aim, we developed a continuous Petri Net model that simulates fundamental signalling cascades involved in melanoma development, such as MAPK and PI3K/AKT, in order to deeply analyze these complex kinase cascades and predict new crucial nodes involved in melanomagenesis. The model pointed out that some microRNAs, like hsa-mir-132, downregulates expression levels of p120RasGAP: under high concentrations of p120RasGAP, MAPK pathway activation is significantly decreased and consequently also PI3K/PDK1/AKT activation. Furthermore, our analysis carried out through the Genomic Data Commons (GDC) Data Portal shows the evidence that hsa-mir-132 is significantly associated with clinical outcome in melanoma cancer genomic data sets of BRAF-mutated patients. In conclusion, targeting miRNAs through antisense oligonucleotides technology may suggest the way to enhance the action of BRAF-inhibitors.
Collapse
|
15
|
Sylman JL, Mitrugno A, Atallah M, Tormoen GW, Shatzel JJ, Tassi Yunga S, Wagner TH, Leppert JT, Mallick P, McCarty OJT. The Predictive Value of Inflammation-Related Peripheral Blood Measurements in Cancer Staging and Prognosis. Front Oncol 2018; 8:78. [PMID: 29619344 PMCID: PMC5871812 DOI: 10.3389/fonc.2018.00078] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
In this review, we discuss the interaction between cancer and markers of inflammation (such as levels of inflammatory cells and proteins) in the circulation, and the potential benefits of routinely monitoring these markers in peripheral blood measurement assays. Next, we discuss the prognostic value and limitations of using inflammatory markers such as neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios and C-reactive protein measurements. Furthermore, the review discusses the benefits of combining multiple types of measurements and longitudinal tracking to improve staging and prognosis prediction of patients with cancer, and the ability of novel in silico frameworks to leverage this high-dimensional data.
Collapse
Affiliation(s)
- Joanna L Sylman
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Annachiara Mitrugno
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Michelle Atallah
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Garth W Tormoen
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph J Shatzel
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States.,Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Samuel Tassi Yunga
- Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Todd H Wagner
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - John T Leppert
- VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Parag Mallick
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Owen J T McCarty
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
16
|
Bahrami A, Miraie-Ashtiani SR, Sadeghi M, Najafi A, Ranjbar R. Dynamic modeling of folliculogenesis signaling pathways in the presence of miRNAs expression. J Ovarian Res 2017; 10:76. [PMID: 29258623 PMCID: PMC5735818 DOI: 10.1186/s13048-017-0371-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background TEK signaling plays a very important role in folliculogenesis. It activates Ras/ERK/MYC, PI3K/AKT/mTORC1 and ovarian steroidogenesis activation pathways. These are the main pathways for cell growth, differentiation, migration, adhesion, proliferation, survival and protein synthesis. Results TEK signaling on each of the two important pathways where levels of pERK, pMYC, pAkt, pMCL1 and pEIF4EBP1 are increased in dominant follicles and pMYC is decreased in dominant follicles. Over activation of ERK and MYC which are the main cell growth and proliferation and over activation of Akt, MCl1, mTORC1 and EIF4EBP1 which are the main cell survival and protein synthesis factors act as promoting factors for folliculogenesis. In case of over expression of hsa-miR-30d-3p and hsa-miR-451a, MYC activity level is considerably increased in subordinate follicles. Our simulation results show that in the presence of has-miR-548v and bta-miR-22-3p, downstream factors of pathways are inhibited. Conclusions Our work offers insight into the design of natural biological procedures and makes predictions that can guide further experimental studies on folliculogenesis pathways. Moreover, it defines a simple signal processing unit that may be useful for engineering synthetic biology and genes circuits to carry out cell-based computation. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0371-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abolfazl Bahrami
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Seyed Reza Miraie-Ashtiani
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, University college of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Kiernan J, Damien P, Monaghan M, Shorr R, McIntyre L, Fergusson D, Tinmouth A, Allan D. Clinical Studies of Ex Vivo Expansion to Accelerate Engraftment After Umbilical Cord Blood Transplantation: A Systematic Review. Transfus Med Rev 2016; 31:173-182. [PMID: 28087163 DOI: 10.1016/j.tmrv.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/30/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023]
Abstract
Cell dose limits greater use of umbilical cord blood (UCB) in hematopoietic cell transplantation. The clinical benefits of ex vivo expansion need clarity to understand its potential impact. A systematic search of studies addressing UCB ex vivo expansion was conducted. Fifteen clinical studies (349 transplanted patients) and 13 registered trials were identified. The co-infusion of an expanded unit and a second unmanipulated unit (8 studies), the fractional expansion of 12% to 60% of a single unit (5 studies), and the infusion of a single expanded unit (2 studies) were reported. More recently, published studies and 12 of 13 ongoing trials involve the use of novel small molecules in addition to traditional cytokine cocktails. Higher total cell number was closely associated with faster neutrophil engraftment. Compared with historical controls, neutrophil engraftment was significantly accelerated in more recent studies using small molecules or mesenchymal stromal cells (MSC) co-culture, and in some cases, platelet recovery was also statistically improved. Recent studies using nicotinamide and StemRegenin-1 reported long-term chimerism of the expanded unit. No significant improvement in survival or other transplant-related outcomes was demonstrated for any of the strategies. Ex vivo expansion of UCB can accelerate initial neutrophil engraftment after transplant. More recent studies suggest that long-term engraftment of ex vivo expanded cord blood units is achievable. Results of larger randomized controlled trials are needed to understand the impact on patient outcomes and health care costs.
Collapse
Affiliation(s)
- Jeffrey Kiernan
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pauline Damien
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Risa Shorr
- Medical Library Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Lauralyn McIntyre
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alan Tinmouth
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Allan
- Center for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Pennisi M, Cavalieri S, Motta S, Pappalardo F. A methodological approach for using high-level Petri Nets to model the immune system response. BMC Bioinformatics 2016; 17:498. [PMID: 28155706 PMCID: PMC5259858 DOI: 10.1186/s12859-016-1361-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mathematical and computational models showed to be a very important support tool for the comprehension of the immune system response against pathogens. Models and simulations allowed to study the immune system behavior, to test biological hypotheses about diseases and infection dynamics, and to improve and optimize novel and existing drugs and vaccines. Continuous models, mainly based on differential equations, usually allow to qualitatively study the system but lack in description; conversely discrete models, such as agent based models and cellular automata, permit to describe in detail entities properties at the cost of losing most qualitative analyses. Petri Nets (PN) are a graphical modeling tool developed to model concurrency and synchronization in distributed systems. Their use has become increasingly marked also thanks to the introduction in the years of many features and extensions which lead to the born of "high level" PN. RESULTS We propose a novel methodological approach that is based on high level PN, and in particular on Colored Petri Nets (CPN), that can be used to model the immune system response at the cellular scale. To demonstrate the potentiality of the approach we provide a simple model of the humoral immune system response that is able of reproducing some of the most complex well-known features of the adaptive response like memory and specificity features. CONCLUSIONS The methodology we present has advantages of both the two classical approaches based on continuous and discrete models, since it allows to gain good level of granularity in the description of cells behavior without losing the possibility of having a qualitative analysis. Furthermore, the presented methodology based on CPN allows the adoption of the same graphical modeling technique well known to life scientists that use PN for the modeling of signaling pathways. Finally, such an approach may open the floodgates to the realization of multi scale models that integrate both signaling pathways (intra cellular) models and cellular (population) models built upon the same technique and software.
Collapse
Affiliation(s)
- Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Salvatore Cavalieri
- Department of Electrical Electronic and Computer Engineering (DIEEI), University of Catania, Catania, Italy
| | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | | |
Collapse
|
19
|
Hatami J, Ferreira FC, da Silva CL, Tiago J, Sequeira A. Computational modeling of megakaryocytic differentiation of umbilical cord blood-derived stem/progenitor cells. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Tarunina M, Hernandez D, Kronsteiner-Dobramysl B, Pratt P, Watson T, Hua P, Gullo F, van der Garde M, Zhang Y, Hook L, Choo Y, Watt SM. A Novel High-Throughput Screening Platform Reveals an Optimized Cytokine Formulation for Human Hematopoietic Progenitor Cell Expansion. Stem Cells Dev 2016; 25:1709-1720. [PMID: 27554619 DOI: 10.1089/scd.2016.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The main limitations of hematopoietic cord blood (CB) transplantation, viz, low cell dosage and delayed reconstitution, can be overcome by ex vivo expansion. CB expansion under conventional culture causes rapid cell differentiation and depletion of hematopoietic stem and progenitor cells (HSPCs) responsible for engraftment. In this study, we use combinatorial cell culture technology (CombiCult®) to identify medium formulations that promote CD133+ CB HSPC proliferation while maintaining their phenotypic characteristics. We employed second-generation CombiCult screens that use electrospraying technology to encapsulate CB cells in alginate beads. Our results suggest that not only the combination but also the order of addition of individual components has a profound influence on expansion of specific HSPC populations. Top protocols identified by the CombiCult screen were used to culture human CD133+ CB HSPCs on nanofiber scaffolds and validate the expansion of the phenotypically defined CD34+CD38lo/-CD45RA-CD90+CD49f+ population of hematopoietic stem cells and their differentiation into defined progeny.
Collapse
Affiliation(s)
- Marina Tarunina
- 1 Plasticell Ltd. , Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Diana Hernandez
- 1 Plasticell Ltd. , Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Barbara Kronsteiner-Dobramysl
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| | - Philip Pratt
- 4 Department of Surgery and Cancer, Faculty of Medicine, Imperial College London , South Kensington, United Kingdom
| | - Thomas Watson
- 1 Plasticell Ltd. , Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Peng Hua
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| | - Francesca Gullo
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| | - Mark van der Garde
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| | - Youyi Zhang
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| | - Lilian Hook
- 1 Plasticell Ltd. , Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Yen Choo
- 1 Plasticell Ltd. , Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Suzanne M Watt
- 2 Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom .,3 Stem Cell Research, NHS Blood and Transplant, Radcliffe Department of Medicine, John Radcliffe Hospital , Oxford, United Kingdom
| |
Collapse
|
21
|
Ragusa MA, Russo G. ODEs approaches in modeling fibrosis: Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca. Phys Life Rev 2016; 17:112-3. [PMID: 27185314 DOI: 10.1016/j.plrev.2016.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | - Giulia Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
22
|
Pennisi M, Russo G, Di Salvatore V, Candido S, Libra M, Pappalardo F. Computational modeling in melanoma for novel drug discovery. Expert Opin Drug Discov 2016; 11:609-21. [PMID: 27046143 DOI: 10.1080/17460441.2016.1174688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is a growing body of evidence highlighting the applications of computational modeling in the field of biomedicine. It has recently been applied to the in silico analysis of cancer dynamics. In the era of precision medicine, this analysis may allow the discovery of new molecular targets useful for the design of novel therapies and for overcoming resistance to anticancer drugs. According to its molecular behavior, melanoma represents an interesting tumor model in which computational modeling can be applied. Melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease as it is resistant to current therapeutic approaches. AREAS COVERED This review discusses the basics of computational modeling in melanoma drug discovery and development. Discussion includes the in silico discovery of novel molecular drug targets, the optimization of immunotherapies and personalized medicine trials. EXPERT OPINION Mathematical and computational models are gradually being used to help understand biomedical data produced by high-throughput analysis. The use of advanced computer models allowing the simulation of complex biological processes provides hypotheses and supports experimental design. The research in fighting aggressive cancers, such as melanoma, is making great strides. Computational models represent the key component to complement these efforts. Due to the combinatorial complexity of new drug discovery, a systematic approach based only on experimentation is not possible. Computational and mathematical models are necessary for bringing cancer drug discovery into the era of omics, big data and personalized medicine.
Collapse
Affiliation(s)
- Marzio Pennisi
- a Department of Mathematics and Computer Science , University of Catania , Catania , Italy
| | - Giulia Russo
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Valentina Di Salvatore
- c Researcher at National Research Council , Institute of Neurological Sciences , Catania , Italy
| | - Saverio Candido
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Massimo Libra
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | | |
Collapse
|
23
|
Pappalardo F, Russo G, Candido S, Pennisi M, Cavalieri S, Motta S, McCubrey JA, Nicoletti F, Libra M. Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer. PLoS One 2016; 11:e0152104. [PMID: 27015094 PMCID: PMC4807832 DOI: 10.1371/journal.pone.0152104] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease. RESULT Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive.
Collapse
Affiliation(s)
| | - Giulia Russo
- Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125, Catania, Italy
| | - Marzio Pennisi
- Department of Mathematics and Computer Science, University of Catania, 95125, Catania, Italy
| | | | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania, 95125, Catania, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, United States of America
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
24
|
van der Garde M, van Pel M, Millán Rivero JE, de Graaf-Dijkstra A, Slot MC, Kleinveld Y, Watt SM, Roelofs H, Zwaginga JJ. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants. Stem Cells Dev 2015; 24:2649-59. [PMID: 26414086 DOI: 10.1089/scd.2015.0138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cotransplantation of CD34(+) hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34(+) cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45(+) cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34(+) cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34(+) cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34(+) cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34(+) cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34(+) cell engraftment.
Collapse
Affiliation(s)
- Mark van der Garde
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands .,3 Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , and NHS Blood and Transplant Oxford, Oxford, United Kingdom
| | - Melissa van Pel
- 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Jose Eduardo Millán Rivero
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Alice de Graaf-Dijkstra
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Manon C Slot
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Yoshiko Kleinveld
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Suzanne M Watt
- 3 Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , and NHS Blood and Transplant Oxford, Oxford, United Kingdom
| | - Helene Roelofs
- 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Jaap Jan Zwaginga
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|