1
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Martínez-García PJ, Mas-Gómez J, Prudencio ÁS, Barriuso JJ, Cantín CM. Genome-wide association analysis of Monilinia fructicola lesion in a collection of Spanish peach landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1165847. [PMID: 37936940 PMCID: PMC10626550 DOI: 10.3389/fpls.2023.1165847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
Brown rot, caused by the Monilinia spp., is the disease that causes the greatest losses in stone fruit worldwide. Currently, M. fructicola has become the dominant species in the main peach production area in Spain. The fruit cuticle is the first barrier of protection against external aggressions and may have a key role in the susceptibility to brown rot. However, information on the role of skin fruit on the resistance to brown rot in peach is scarce. Previous genetic analyses in peach have demonstrated that brown rot resistance is a complex and quantitative trait in which different fruit parts and resistance mechanisms are involved. To search for genomic areas involved in the control of the cultivar susceptibility to brown rot and to elucidate the role of fruit skin against this infection, we have studied, for two consecutive seasons (2019 and 2020), the fruit susceptibility to M. fructicola, together with fruit cuticle thickness (CT) and density (CD), in a collection of 80 Spanish and 5 foreign peach cultivars from the National Peach Collection at CITA (Zaragoza, Spain). Brown rot incidence, lesion diameter, and severity index were calculated after 5 days of inoculation on non-wounded fruit. The peach collection has also been genotyped using the new peach SNP chip (9 + 9K). Genotypic and phenotypic data have been used to perform a genome-wide association analysis (GWAS). Phenotyping has shown a wide variability on the brown rot susceptibility within the Spanish germplasm as well as on CD and CT. The GWAS results have identified several significant SNPs associated with disease severity index (DSI), CD, and CT, five of which were considered as reliable SNP-trait associations. A wide protein network analysis, using 127 genes within the regions of the reliable SNPs and previously identified candidate genes (169) associated with Monilinia spp. resistance, highlighted several genes involved in classical hypersensitive response (HR), genes related to wax layers as ceramidases and lignin precursors catalyzers, and a possible role of autophagy during brown rot infection. This work adds relevant information on the complexity resistance mechanisms to brown rot infection in peach fruits and the genetics behind them.
Collapse
Affiliation(s)
- Pedro J. Martínez-García
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Jorge Mas-Gómez
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Ángela S. Prudencio
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Juan José Barriuso
- AgriFood Institute of Aragon (IA2), CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Celia M. Cantín
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
| |
Collapse
|
3
|
Bettinelli P, Nicolini D, Costantini L, Stefanini M, Hausmann L, Vezzulli S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar 'Merzling'. Int J Mol Sci 2023; 24:3568. [PMID: 36834979 PMCID: PMC9961920 DOI: 10.3390/ijms24043568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Black rot (BR), caused by Guignardia bidwellii, is an emergent fungal disease threatening viticulture and affecting several mildew-tolerant varieties. However, its genetic bases are not fully dissected yet. For this purpose, a segregating population derived from the cross 'Merzling' (hybrid, resistant) × 'Teroldego' (V. vinifera, susceptible) was evaluated for BR resistance at the shoot and bunch level. The progeny was genotyped with the GrapeReSeq Illumina 20K SNPchip, and 7175 SNPs were combined with 194 SSRs to generate a high-density linkage map of 1677 cM. The QTL analysis based on shoot trials confirmed the previously identified Resistance to Guignardia bidwellii (Rgb)1 locus on chromosome 14, which explained up to 29.2% of the phenotypic variance, reducing the genomic interval from 2.4 to 0.7 Mb. Upstream of Rgb1, this study revealed a new QTL explaining up to 79.9% of the variance for bunch resistance, designated Rgb3. The physical region encompassing the two QTLs does not underlie annotated resistance (R)-genes. The Rgb1 locus resulted enriched in genes belonging to phloem dynamics and mitochondrial proton transfer, while Rgb3 presented a cluster of pathogenesis-related Germin-like protein genes, promoters of the programmed cell death. These outcomes suggest a strong involvement of mitochondrial oxidative burst and phloem occlusion in BR resistance mechanisms and provide new molecular tools for grapevine marker-assisted breeding.
Collapse
Affiliation(s)
- Paola Bettinelli
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, TN, Italy
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Daniela Nicolini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Laura Costantini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Marco Stefanini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Ludger Hausmann
- JKI Institute for Grapevine Breeding, Geilweilerhof, 76833 Siebeldingen, Germany
| | - Silvia Vezzulli
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| |
Collapse
|
4
|
Vervalle JA, Costantini L, Lorenzi S, Pindo M, Mora R, Bolognesi G, Marini M, Lashbrooke JG, Tobutt KR, Vivier MA, Roodt-Wilding R, Grando MS, Bellin D. A high-density integrated map for grapevine based on three mapping populations genotyped by the Vitis18K SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4371-4390. [PMID: 36271055 PMCID: PMC9734222 DOI: 10.1007/s00122-022-04225-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We present a high-density integrated map for grapevine, allowing refinement and improved understanding of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping. The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the well-known wine cultivars 'Cabernet Sauvignon', 'Corvina' and 'Rhine Riesling', the lesser-known wine variety 'Deckrot', and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 0.74 to 0.99 cM were developed. These maps show high correlations (0.9965-0.9971) with the reference assembly, containing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization and the dissection of complex traits.
Collapse
Affiliation(s)
- Jessica A Vervalle
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Riccardo Mora
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giada Bolognesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Justin G Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ken R Tobutt
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Kalluri N, Serra O, Donoso JM, Picañol R, Howad W, Eduardo I, Arús P. Construction of a collection of introgression lines of "Texas" almond DNA fragments in the "Earlygold" peach genetic background. HORTICULTURE RESEARCH 2022; 9:uhac070. [PMID: 35669708 PMCID: PMC9157678 DOI: 10.1093/hr/uhac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Peach [Prunus persica L. Batsch] is one of the major temperate fruit tree species, the commercial materials of which have a low level of genetic variability. Almond [P. dulcis (Mill) DA Webb], a close relative of peach cultivated for its kernels, has a much higher level of diversity. The species are inter-compatible and often produce fertile hybrids, almond being a possible source of new genes for peach that could provide biotic and abiotic stress tolerance traits. In this paper we describe the development of a collection of peach-almond introgression lines (ILs) having a single fragment of almond (cv. Texas) in the peach background (cv. Earlygold). Lines with few introgressions were selected with markers from successive generations from a "Texas" × "Earlygold" F1 hybrid, initially using a set of SSRs and later with the 18 k peach SNP chip, allowing for the final extraction of 67 lines, 39 with almond heterozygous introgressions covering 99% of the genome, and 28 with homozygous introgressions covering 83% of the genome. As a proof of concept, four major genes and four quantitative characters were examined in the selected ILs giving results generally consistent with previous information on the genetics of these characters. This collection is the first of its kind produced in a woody perennial species and promises to be a valuable tool for genetic analyses, including dissection of quantitative traits, positional cloning, epistasis and as prebreeding material to introgress almond genes of interest into the peach commercial gene pool.
Collapse
Affiliation(s)
- Naveen Kalluri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal (BPGV), Braga, Portugal
| | - José Manuel Donoso
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación Rayentué, Av. Salamanca s/n Sector Los Choapinos, Rengo 2940000, Chile
| | - Roger Picañol
- Rijk Zwaan Ibérica S.A. Finca La Marina-PJ Lo Contreras 30395, La Puebla|Cartagena (Murcia), Spain
| | - Werner Howad
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Iban Eduardo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- IRTA, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
6
|
Mas-Gómez J, Cantín CM, Moreno MÁ, Martínez-García PJ. Genetic Diversity and Genome-Wide Association Study of Morphological and Quality Traits in Peach Using Two Spanish Peach Germplasm Collections. FRONTIERS IN PLANT SCIENCE 2022; 13:854770. [PMID: 35386674 PMCID: PMC8979248 DOI: 10.3389/fpls.2022.854770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Peach [Prunus persica (L.) Batsch] is one of the most important stone fruits species in world production. Spanish peach production is currently the second largest in the world and the available cultivars in Spain includes a great source of genetic diversity with variability in fruit quality traits and postharvest disorders tolerance. In order to explore the genetic diversity and single nucleotide polymorphism (SNP)-trait associations in the Spanish germplasm, the new peach 18K SNP v2 array was used to genotype 287 accessions belonging to the two National Peach Germplasm Collections placed at the Agrifood Research and Technology Centre of Aragon (CITA) and at the Experimental Station of Aula Dei (EEAD)-CSIC. The high density of the new SNP array allowed the identification of 30 groups of synonymies, which had not been identified before using low-density markers. In addition, a possible large-scale molecular event in 'Starcrest', a sport of 'Springcrest', was detected showing a possible chromosome replacement of a 13.5 Mb region. Previous suggestions about Spanish diversification regions agreed with our genetic diversity and linkage disequilibrium (LD) decay results using high-density markers. A genome-wide association study (GWAS) detected 34 significant SNP-trait association with the type of leaf glands (TLG), fruit hairiness (FH), and flesh texture (FT). The impact of the significant SNPs was studied with SnpEff. Candidate genes encode several important family proteins involved in trichome formation and powdery mildew resistance (linked to TLG in peach). The genetic distance among cultivars obtained, together with SNP-trait associations found, provide new knowledge for marker-assisted selection and crossing approaches in peach breeding programmes.
Collapse
Affiliation(s)
- Jorge Mas-Gómez
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Celia M. Cantín
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
- Department of Horticulture, Agrifood Research and Technology Centre of Aragon, Zaragoza, Spain
| | - María Ángeles Moreno
- Department of Pomology, Experimental Station of Aula Dei-CSIC, Spanish National Research Council, Zaragoza, Spain
| | - Pedro J. Martínez-García
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
7
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
8
|
Howard NP, Troggio M, Durel CE, Muranty H, Denancé C, Bianco L, Tillman J, van de Weg E. Integration of Infinium and Axiom SNP array data in the outcrossing species Malus × domestica and causes for seemingly incompatible calls. BMC Genomics 2021; 22:246. [PMID: 33827434 PMCID: PMC8028180 DOI: 10.1186/s12864-021-07565-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) array technology has been increasingly used to generate large quantities of SNP data for use in genetic studies. As new arrays are developed to take advantage of new technology and of improved probe design using new genome sequence and panel data, a need to integrate data from different arrays and array platforms has arisen. This study was undertaken in view of our need for an integrated high-quality dataset of Illumina Infinium® 20 K and Affymetrix Axiom® 480 K SNP array data in apple (Malus × domestica). In this study, we qualify and quantify the compatibility of SNP calling, defined as SNP calls that are both accurate and concordant, across both arrays by two approaches. First, the concordance of SNP calls was evaluated using a set of 417 duplicate individuals genotyped on both arrays starting from a set of 10,295 robust SNPs on the Infinium array. Next, the accuracy of the SNP calls was evaluated on additional germplasm (n = 3141) from both arrays using Mendelian inconsistent and consistent errors across thousands of pedigree links. While performing this work, we took the opportunity to evaluate reasons for probe failure and observed discordant SNP calls. Results Concordance among the duplicate individuals was on average of 97.1% across 10,295 SNPs. Of these SNPs, 35% had discordant call(s) that were further curated, leading to a final set of 8412 (81.7%) SNPs that were deemed compatible. Compatibility was highly influenced by the presence of alternate probe binding locations and secondary polymorphisms. The impact of the latter was highly influenced by their number and proximity to the 3′ end of the probe. Conclusions The Infinium and Axiom SNP array data were mostly compatible. However, data integration required intense data filtering and curation. This work resulted in a workflow and information that may be of use in other data integration efforts. Such an in-depth analysis of array concordance and accuracy as ours has not been previously described in the literature and will be useful in future work on SNP array data integration and interpretation, and in probe/platform development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07565-7.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Univ., Oldenburg, Germany.,Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | | | - Charles-Eric Durel
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Hélène Muranty
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - John Tillman
- Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | - Eric van de Weg
- Department of Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Fu W, da Silva Linge C, Gasic K. Genome-Wide Association Study of Brown Rot ( Monilinia spp.) Tolerance in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:635914. [PMID: 33790926 PMCID: PMC8006439 DOI: 10.3389/fpls.2021.635914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Brown rot, caused by Monilinia spp., is one of the most important diseases on stone fruit worldwide. Severe yield loss can be caused by pre- and post-harvest fruit decay. Although some degree of tolerance has been reported in peach and almond, the genetic resistance in peach cultivars is still lacking. To date, only few genomic regions associated with brown rot response in fruit skin and flesh have been detected in peach. Previous studies suggested brown rot tolerance in peach being a polygenic quantitative trait. More information is needed to uncover the genetics behind brown rot tolerance in peach. To identify the genomic regions in peach associated with this trait, 26 cultivars and progeny from 9 crosses with 'Bolinha' sources of tolerance, were phenotyped across two seasons (2015 and 2016) for brown rot disease severity index in wounded and non-wounded fruits and genotyped using a newly developed 9+9K peach SNP array. Genome wide association study using single- and multi-locus methods by GAPIT version 3, mrMLM 4.0, GAPIT and G Model, revealed 14 reliable SNPs significantly associated with brown rot infection responses in peach skin (10) and flesh (4) across whole genome except for chromosome 3. Candidate gene analysis within the haplotype regions of the detected markers identified 25 predicted genes associated with pathogen infection response/resistance. Results presented here facilitate further understanding of genetics behind brown rot tolerance in peach and provide an important foundation for DNA-assisted breeding.
Collapse
Affiliation(s)
| | | | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Di Guardo M, Farneti B, Khomenko I, Modica G, Mosca A, Distefano G, Bianco L, Troggio M, Sottile F, La Malfa S, Biasioli F, Gentile A. Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels. HORTICULTURE RESEARCH 2021; 8:27. [PMID: 33518710 PMCID: PMC7848010 DOI: 10.1038/s41438-021-00465-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 05/16/2023]
Abstract
Almond is appreciated for its nutraceutical value and for the aromatic profile of the kernels. In this work, an almond collection composed of 96 Sicilian accessions complemented with 10 widely cultivated cultivars was phenotyped for the production of volatile organic compounds using a proton-transfer time-of-flight mass spectrometer and genotyped using the Illumina Infinium®18 K Peach SNP array. The profiling of the aroma was carried out on fresh and roasted kernels enabling the detection of 150 mass peaks. Sixty eight, for the most related with sulfur compounds, furan containing compounds, and aldehydes formed by Strecker degradation, significantly increased during roasting, while the concentration of fifty-four mass peaks, for the most belonging to alcohols and terpenes, significantly decreased. Four hundred and seventy-one robust SNPs were selected and employed for population genetic studies. Structure analysis detected three subpopulations with the Sicilian accessions characterized by a different genetic stratification compared to those collected in Apulia (South Italy) and the International cultivars. The linkage-disequilibrium (LD) decay across the genome was equal to r2 = 0.083. Furthermore, a high level of collinearity (r2 = 0.96) between almond and peach was registered confirming the high synteny between the two genomes. A preliminary application of a genome-wide association analysis allowed the detection of significant marker-trait associations for 31 fresh and 33 roasted almond mass peaks respectively. An accurate genetic and phenotypic characterization of novel germplasm can represent a valuable tool for the set-up of marker-assisted selection of novel cultivars with an enhanced aromatic profile.
Collapse
Affiliation(s)
- M Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - B Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - I Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - G Modica
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - A Mosca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - G Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy.
| | - L Bianco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - M Troggio
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - F Sottile
- Dipartimento di Architettura, University of Palermo, Viale delle Scienze, Ed. 14 90128, Palermo, Italy
| | - S La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - F Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - A Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
- National Center for Citrus Improvement, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, Costa F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. HORTICULTURE RESEARCH 2020; 7:148. [PMID: 32922820 PMCID: PMC7459338 DOI: 10.1038/s41438-020-00370-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 05/11/2023]
Abstract
Texture is a complex trait and a major component of fruit quality in apple. While the major effect of MdPG1, a gene controlling firmness, has already been exploited in elite cultivars, the genetic basis of crispness remains poorly understood. To further improve fruit texture, harnessing loci with minor effects via genomic selection is therefore necessary. In this study, we measured acoustic and mechanical features in 537 genotypes to dissect the firmness and crispness components of fruit texture. Predictions of across-year phenotypic values for these components were calculated using a model calibrated with 8,294 SNP markers. The best prediction accuracies following cross-validations within the training set of 259 genotypes were obtained for the acoustic linear distance (0.64). Predictions for biparental families using the entire training set varied from low to high accuracy, depending on the family considered. While adding siblings or half-siblings into the training set did not clearly improve predictions, we performed an optimization of the training set size and composition for each validation set. This allowed us to increase prediction accuracies by 0.17 on average, with a maximal accuracy of 0.81 when predicting firmness in the 'Gala' × 'Pink Lady' family. Our results therefore identified key genetic parameters to consider when deploying genomic selection for texture in apple. In particular, we advise to rely on a large training population, with high phenotypic variability from which a 'tailored training population' can be extracted using a priori information on genetic relatedness, in order to predict a specific target population.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
- Present Address: GAFL, INRAE, 84140 Montfavet, France
| | - Hélène Muranty
- IRHS, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Mario Di Guardo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Walter Guerra
- Research Centre Laimburg, Laimburg 6, 39040 Auer, Italy
| | - Andrea Patocchi
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
13
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Vanderzande S, Zheng P, Cai L, Barac G, Gasic K, Main D, Iezzoni A, Peace C. The cherry 6+9K SNP array: a cost-effective improvement to the cherry 6K SNP array for genetic studies. Sci Rep 2020; 10:7613. [PMID: 32376836 PMCID: PMC7203174 DOI: 10.1038/s41598-020-64438-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
Cherry breeding and genetic studies can benefit from genome-wide genetic marker assays. Currently, a 6K SNP array enables genome scans in cherry; however, only a third of these SNPs are informative, with low coverage in many genomic regions. Adding previously detected SNPs to this array could provide a cost-efficient upgrade with increased genomic coverage across the 670 cM/352.9 Mb cherry whole genome sequence. For sweet cherry, new SNPs were chosen following a focal point strategy, grouping six to eight SNPs within 10-kb windows with an average of 0.6 cM (627 kb) between focal points. Additional SNPs were chosen to represent important regions. Sweet cherry, the fruticosa subgenome of sour cherry, and cherry organellar genomes were targeted with 6942, 2020, and 38 new SNPs, respectively. The +9K add-on provided 2128, 1091, and 70 new reliable, polymorphic SNPs for sweet cherry and the avium and the fruticosa subgenomes of sour cherry, respectively. For sweet cherry, 1241 reliable polymorphic SNPs formed 237 informative focal points, with another 2504 SNPs in-between. The +9K SNPs increased genetic resolution and genome coverage of the original cherry SNP array and will help increase understanding of the genetic control of key traits and relationships among individuals in cherry.
Collapse
Affiliation(s)
- Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, USA.
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Goran Barac
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, University of Novi Sad, Novi Sad, Serbia
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
15
|
Unraveling the genetic origin of 'Glera', 'Ribolla Gialla' and other autochthonous grapevine varieties from Friuli Venezia Giulia (northeastern Italy). Sci Rep 2020; 10:7206. [PMID: 32350312 PMCID: PMC7190720 DOI: 10.1038/s41598-020-64061-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
'Glera' and 'Ribolla Gialla' are the most economically relevant local grapevine cultivars of Friuli Venezia Giulia region (north-eastern Italy). 'Glera' is used to produce the world-renowned Prosecco wine. 'Ribolla Gialla' cultivation is constantly increasing due to the strong demand for sparkling wine and is the most important variety in Brda (Slovenia). Knowledge of local varieties history in terms of migration and pedigree relationships has scientific and marketing appeal. Following prospections, genotyping and ampelographic characterization of minor germplasm in Friuli Venezia Giulia, a further research was developed to understand the parentage relationships among the grapevine varieties grown in this region. An integrated strategy was followed combining the analysis of nuclear and chloroplast microsatellites with the Vitis 18k SNP chip. Two main recurrent parents were found, which can be regarded as "founders": 'Vulpea', an Austrian variety parent-offspring related with at least ten Friuli Venezia Giulia cultivars, among them 'Glera', and 'Refosco Nostrano', first degree related with other six Friuli Venezia Giulia varieties. 'Ribolla Gialla' was shown to be another member of the impressively long list of offspring derived from the prolific 'Heunisch Weiss'. Combining molecular markers and historical references was a high-performance strategy for retracing and adjusting the history of cultivars.
Collapse
|
16
|
High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS One 2019; 14:e0210928. [PMID: 31246947 PMCID: PMC6597046 DOI: 10.1371/journal.pone.0210928] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
High-quality genotypic data is a requirement for many genetic analyses. For any crop, errors in genotype calls, phasing of markers, linkage maps, pedigree records, and unnoticed variation in ploidy levels can lead to spurious marker-locus-trait associations and incorrect origin assignment of alleles to individuals. High-throughput genotyping requires automated scoring, as manual inspection of thousands of scored loci is too time-consuming. However, automated SNP scoring can result in errors that should be corrected to ensure recorded genotypic data are accurate and thereby ensure confidence in downstream genetic analyses. To enable quick identification of errors in a large genotypic data set, we have developed a comprehensive workflow. This multiple-step workflow is based on inheritance principles and on removal of markers and individuals that do not follow these principles, as demonstrated here for apple, peach, and sweet cherry. Genotypic data was obtained on pedigreed germplasm using 6-9K SNP arrays for each crop and a subset of well-performing SNPs was created using ASSIsT. Use of correct (and corrected) pedigree records readily identified violations of simple inheritance principles in the genotypic data, streamlined with FlexQTL software. Retained SNPs were grouped into haploblocks to increase the information content of single alleles and reduce computational power needed in downstream genetic analyses. Haploblock borders were defined by recombination locations detected in ancestral generations of cultivars and selections. Another round of inheritance-checking was conducted, for haploblock alleles (i.e., haplotypes). High-quality genotypic data sets were created using this workflow for pedigreed collections representing the U.S. breeding germplasm of apple, peach, and sweet cherry evaluated within the RosBREED project. These data sets contain 3855, 4005, and 1617 SNPs spread over 932, 103, and 196 haploblocks in apple, peach, and sweet cherry, respectively. The highly curated phased SNP and haplotype data sets, as well as the raw iScan data, of germplasm in the apple, peach, and sweet cherry Crop Reference Sets is available through the Genome Database for Rosaceae.
Collapse
|
17
|
Hardner CM, Hayes BJ, Kumar S, Vanderzande S, Cai L, Piaskowski J, Quero-Garcia J, Campoy JA, Barreneche T, Giovannini D, Liverani A, Charlot G, Villamil-Castro M, Oraguzie N, Peace CP. Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array. HORTICULTURE RESEARCH 2019; 6:6. [PMID: 30603092 PMCID: PMC6312542 DOI: 10.1038/s41438-018-0081-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/08/2018] [Accepted: 07/15/2018] [Indexed: 05/21/2023]
Abstract
The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.
Collapse
Affiliation(s)
- Craig M. Hardner
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Ben J. Hayes
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Satish Kumar
- The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, Hastings, 4130 New Zealand
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Julia Piaskowski
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - José Quero-Garcia
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - José Antonio Campoy
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - Teresa Barreneche
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - Daniela Giovannini
- Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121 Emilia-Romagna, Italy
| | - Alessandro Liverani
- Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121 Emilia-Romagna, Italy
| | - Gérard Charlot
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), 751 Chemin de Balandran, 30127 Bellegarde, France
| | - Miguel Villamil-Castro
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Nnadozie Oraguzie
- Department of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, 24106N Bunn Road, Prosser, WA 99350 USA
| | - Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
18
|
Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel CE, Mauroux JB, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, van de Weg E. An integrated approach for increasing breeding efficiency in apple and peach in Europe. HORTICULTURE RESEARCH 2018; 5:11. [PMID: 29507735 PMCID: PMC5830435 DOI: 10.1038/s41438-018-0016-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/23/2017] [Indexed: 05/02/2023]
Abstract
Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.
Collapse
Affiliation(s)
- Francois Laurens
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Pere Arus
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
| | - Marco Bink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708PB The Netherlands
- Present Address: Hendrix Genetics Research, Technology & Services, Boxmeer, 5830 AC The Netherlands
| | - Joan Bonany
- IRTA-Mas Badia, Mas Badia, La Tallada, 17134 Spain
| | - Andrea Caprera
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | | | - Charles-Eric Durel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | | | - Hélène Muranty
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Nelson Nazzicari
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | - Andrea Patocchi
- Agroscope, Research Division Plant Breeding, Schloss 1, Wädenswil, 8820 Switzerland
| | - Andreas Peil
- Julius Kühn-Institute (JKI); Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, Dresden, 01326 Germany
| | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Alessandra Stella
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- CREA-VE, Center of Viticulture and Enology, via XXVIII Aprile 26, Conegliano (TV), 31015 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O.Box 386, Wageningen, 6700AJ The Netherlands
| |
Collapse
|
19
|
Hernández Mora JR, Micheletti D, Bink M, Van de Weg E, Cantín C, Nazzicari N, Caprera A, Dettori MT, Micali S, Banchi E, Campoy JA, Dirlewanger E, Lambert P, Pascal T, Troggio M, Bassi D, Rossini L, Verde I, Quilot-Turion B, Laurens F, Arús P, Aranzana MJ. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 2017; 18:404. [PMID: 28583082 PMCID: PMC5460339 DOI: 10.1186/s12864-017-3783-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. Results Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. Conclusions The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3783-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José R Hernández Mora
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Diego Micheletti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Marco Bink
- Hendrix Genetics Research, Technology & Services B.V., P.O. Box 114, 5830AC, Boxmeer, The Netherlands
| | - Eric Van de Weg
- Plant Breeding, Wageningen University and Research Droevendaalsesteeg 1, P.O. Box 386, 6700AJ, Wageningen, The Netherlands
| | - Celia Cantín
- IRTA, FruitCentreParc Cientific i Tecnològic Agroalimentari de Lleida (PCiTAL), Lleida, Spain
| | - Nelson Nazzicari
- PTP Science Park, Via Einstein, 26900, Lodi, Italy.,Council for Agricultural Research and Economics (CREA) Research Centre for Fodder Crops and Dairy Productions, Lodi, Italy
| | | | - Maria Teresa Dettori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | - Sabrina Micali
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | - Elisa Banchi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | | | | | | | | | - Michela Troggio
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Daniele Bassi
- Università degli Studi di Milano, DiSAA, Via Celoria 2, 20133, Milan, Italy
| | - Laura Rossini
- PTP Science Park, Via Einstein, 26900, Lodi, Italy.,Università degli Studi di Milano, DiSAA, Via Celoria 2, 20133, Milan, Italy
| | - Ignazio Verde
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA) - Centro di Ricerca per la Frutticoltura, 00134, Roma, Italy
| | | | | | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB; Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain.
| |
Collapse
|
20
|
Farneti B, Di Guardo M, Khomenko I, Cappellin L, Biasioli F, Velasco R, Costa F. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1467-1478. [PMID: 28338794 PMCID: PMC5441895 DOI: 10.1093/jxb/erx018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds.
Collapse
Affiliation(s)
- Brian Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Mario Di Guardo
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Graduate School Experimental Plant Sciences, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstr. 25/3, 6020 Innsbruck, Austria
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| |
Collapse
|
21
|
Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1451-1466. [PMID: 28338805 PMCID: PMC5441909 DOI: 10.1093/jxb/erx017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties.
Collapse
Affiliation(s)
- Mario Di Guardo
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Graduate School Experimental Plant Sciences, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Marco C A M Bink
- Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Walter Guerra
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Thomas Letschka
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Lidia Lozano
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Nicola Busatto
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Lara Poles
- Innovation Fruit Consortium (CIF), via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alice Tadiello
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Luca Bianco
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Fabrizio Costa
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| |
Collapse
|
22
|
Migault V, Pallas B, Costes E. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture. FRONTIERS IN PLANT SCIENCE 2017; 7:2065. [PMID: 28127302 PMCID: PMC5226960 DOI: 10.3389/fpls.2016.02065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/26/2016] [Indexed: 05/26/2023]
Abstract
In crops, optimizing target traits in breeding programs can be fostered by selecting appropriate combinations of architectural traits which determine light interception and carbon acquisition. In apple tree, architectural traits were observed to be under genetic control. However, architectural traits also result from many organogenetic and morphological processes interacting with the environment. The present study aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms of architectural traits, previously described in a bi-parental population. We focused on parameters related to organogenesis (phyllochron and immediate branching) and morphogenesis processes (internode length and leaf area) during the first year of tree growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes, issued from a 'Starkrimson' × 'Granny Smith' cross, were used. The phyllochron was estimated as a function of thermal time and sylleptic branching was modeled subsequently depending on phyllochron. From a genetic map built with SNPs, marker effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data. These effects were then considered in MAppleT to simulate tree development in the two climatic conditions. The genome wide prediction model gave consistent estimations of parameter values with correlation coefficients between observed values and estimated values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the prediction model following cross validation schemas was lower. Three integrative traits (the number of leaves, trunk length, and number of sylleptic laterals) were considered for validating MAppleT simulations. In 2007 climatic conditions, simulated values were close to observations, highlighting the correct simulation of genetic variability. However, in 2004 conditions which were not used for model calibration, the simulations differed from observations. This study demonstrates the possibility of integrating genome-based information in a FSPM for a perennial fruit tree. It also showed that further improvements are required for improving the prediction ability. Especially temperature effect should be extended and other factors taken into account for modeling GxE interactions. Improvements could also be expected by considering larger populations and by testing other genome wide prediction models. Despite these limitations, this study opens new possibilities for supporting plant breeding by in silico evaluations of the impact of genotypic polymorphisms on plant integrative phenotypes.
Collapse
Affiliation(s)
| | | | - Evelyne Costes
- INRA, UMR 1334 AGAP, Equipe Architecture et Fonctionnement des Espèces FruitièresMontpellier, France
| |
Collapse
|
23
|
Durand JB, Allard A, Guitton B, van de Weg E, Bink MCAM, Costes E. Predicting Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family Population Based on Statistical Indices and Simplified Phenotyping. FRONTIERS IN PLANT SCIENCE 2017; 8:858. [PMID: 28638387 PMCID: PMC5461300 DOI: 10.3389/fpls.2017.00858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/08/2017] [Indexed: 05/18/2023]
Abstract
Irregular flowering over years is commonly observed in fruit trees. The early prediction of tree behavior is highly desirable in breeding programmes. This study aims at performing such predictions, combining simplified phenotyping and statistics methods. Sequences of vegetative vs. floral annual shoots (AS) were observed along axes in trees belonging to five apple related full-sib families. Sequences were analyzed using Markovian and linear mixed models including year and site effects. Indices of flowering irregularity, periodicity and synchronicity were estimated, at tree and axis scales. They were used to predict tree behavior and detect QTL with a Bayesian pedigree-based analysis, using an integrated genetic map containing 6,849 SNPs. The combination of a Biennial Bearing Index (BBI) with an autoregressive coefficient (γ g ) efficiently predicted and classified the genotype behaviors, despite few misclassifications. Four QTLs common to BBIs and γ g and one for synchronicity were highlighted and revealed the complex genetic architecture of the traits. Irregularity resulted from high AS synchronism, whereas regularity resulted from either asynchronous locally alternating or continual regular AS flowering. A relevant and time-saving method, based on a posteriori sampling of axes and statistical indices is proposed, which is efficient to evaluate the tree breeding values for flowering regularity and could be transferred to other species.
Collapse
Affiliation(s)
- Jean-Baptiste Durand
- Laboratoire Jean Kuntzmann, Inria Mistis, Université Grenoble AlpesGrenoble, France
- Virtual Plants Team, Inria and CIRAD, UMR AGAPMontpellier, France
| | - Alix Allard
- Equipe Architecture et Fonctionnement des Espèces Fruitières, UMR AGAP, Institut National de la Recherche AgronomiqueMontpellier, France
| | - Baptiste Guitton
- Equipe Architecture et Fonctionnement des Espèces Fruitières, UMR AGAP, Institut National de la Recherche AgronomiqueMontpellier, France
| | - Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Marco C. A. M. Bink
- Biometris, Wageningen University and ResearchWageningen, Netherlands
- Research & Technology Centre, Hendrix GeneticsBoxmeer, Netherlands
| | - Evelyne Costes
- Equipe Architecture et Fonctionnement des Espèces Fruitières, UMR AGAP, Institut National de la Recherche AgronomiqueMontpellier, France
- *Correspondence: Evelyne Costes
| |
Collapse
|
24
|
Allard A, Bink MCAM, Martinez S, Kelner JJ, Legave JM, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2875-88. [PMID: 27034326 PMCID: PMC4861029 DOI: 10.1093/jxb/erw130] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.
Collapse
Affiliation(s)
- Alix Allard
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France Montpellier SupAgro, UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Marco C A M Bink
- Biometris, Wageningen University and Research centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Sébastien Martinez
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Jean-Jacques Kelner
- Montpellier SupAgro, UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Jean-Michel Legave
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Mario di Guardo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Erica A Di Pierro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - François Laurens
- INRA, UMR1345, Institut de Recherche en Horticulture et Semences IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, F-49071 Beaucouzé, France
| | - Eric W van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Evelyne Costes
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| |
Collapse
|
25
|
Voorrips RE, Bink MCAM, Kruisselbrink JW, Koehorst-van Putten HJJ, van de Weg WE. PediHaplotyper: software for consistent assignment of marker haplotypes in pedigrees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2016; 36:119. [PMID: 27547106 PMCID: PMC4977329 DOI: 10.1007/s11032-016-0539-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/26/2016] [Indexed: 05/18/2023]
Abstract
In the study of large outbred pedigrees with many founders, individual bi-allelic markers, such as SNP markers, carry little information. After phasing the marker genotypes, multi-allelic loci consisting of groups of closely linked markers can be identified, which are called "haploblocks". Here, we describe PediHaplotyper, an R package capable of assigning consistent alleles to such haploblocks, allowing for missing and incorrect SNP data. These haploblock genotypes are much easier to interpret by the human investigator than the original SNP data and also allow more efficient QTL analyses that require less memory and computation time.
Collapse
Affiliation(s)
- Roeland E. Voorrips
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Marco C. A. M. Bink
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Hendrix Genetics Research, P.O. Box 114, 5830 AC Boxmeer, The Netherlands
| | - Johannes W. Kruisselbrink
- Biometris, Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | - W. Eric van de Weg
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
26
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
27
|
Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MCAM, Voorrips RE, Aziz E, Velasco R, Laurens F, van de Weg WE. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. HORTICULTURE RESEARCH 2016; 3:16057. [PMID: 27917289 PMCID: PMC5120355 DOI: 10.1038/hortres.2016.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.
Collapse
Affiliation(s)
| | | | - Mario Di Guardo
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | | | | | - Sara Longhi
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Michela Troggio
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Hélène Muranty
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Thomas Letschka
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | - Lidia Lozano Luis
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | | | - Diego Micheletti
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Marco CAM Bink
- Biometris, Wageningen University and Research, Wageningen 6700AA, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Ebrahimi Aziz
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Riccardo Velasco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - François Laurens
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - W Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- ()
| |
Collapse
|