1
|
Duarte-Delgado D, Vogt I, Dadshani S, Léon J, Ballvora A. Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat. PLANT MOLECULAR BIOLOGY 2024; 114:119. [PMID: 39485577 PMCID: PMC11530504 DOI: 10.1007/s11103-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
- Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia
- Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Inci Vogt
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Dantas CWD, da Costa Neto SR, Alves SIA, da Costa Pinheiro K, De Los Santos EFF, Ramos RTJ. SATIN: a micro and mini satellite mining tool of total genome and coding regions with analysis of perfect repeats polymorphism in coding regions. BMC Bioinformatics 2024; 25:217. [PMID: 38890569 PMCID: PMC11186120 DOI: 10.1186/s12859-024-05842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Tandem repeats are specific sequences in genomic DNA repeated in tandem that are present in all organisms. Among the subcategories of TRs we have Satellite repeats, that is divided into macrosatellites, minisatellites, and microsatellites, being the last two of specific interest because they can identify polymorphisms between organisms due to their instability. Currently, most mining tools focus on Simple Sequence Repeats (SSR) mining, and only a few can identify SSRs in the coding regions. RESULTS We developed a microsatellite mining software called SATIN (Micro and Mini SATellite IdentificatioN tool) based on a new sliding window algorithm written in C and Python. It represents a new approach to SSR mining by addressing the limitations of existing tools, particularly in coding region SSR mining. SATIN is available at https://github.com/labgm/SATIN.git . It was shown to be the second fastest for perfect and compound SSR mining. It can identify SSRs from coding regions plus SSRs with motif sizes bigger than 6. Besides the SSR mining, SATIN can also analyze SSRs polymorphism on coding-regions from pre-determined groups, and identify SSRs differentially abundant among them on a per-gene basis. To validate, we analyzed SSRs from two groups of Escherichia coli (K12 and O157) and compared the results with 5 known SSRs from coding regions. SATIN identified all 5 SSRs from 237 genes with at least one SSR on it. CONCLUSIONS The SATIN is a novel microsatellite search software that utilizes an innovative sliding window technique based on a numerical list for repeat region search to identify perfect, and composite SSRs while generating comprehensible and analyzable outputs. It is a tool capable of using files in fasta or GenBank format as input for microsatellite mining, also being able to identify SSRs present in coding regions for GenBank files. In conclusion, we expect SATIN to help identify potential SSRs to be used as genetic markers.
Collapse
Affiliation(s)
| | | | - Sandy Ingrid Aguiar Alves
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil
| | - Kenny da Costa Pinheiro
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil
| | | | - Rommel Thiago Jucá Ramos
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
3
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Lazo GR, Kathiresan N, Sharma PK, Moot I, Yadav IS, Singh L, Saripalli G, Rawat N, Datla R, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Tiwari VK, Abrouk M, Poland J, Krattinger SG. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 2023; 620:830-838. [PMID: 37532937 PMCID: PMC10447253 DOI: 10.1038/s41586-023-06389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.
Collapse
Affiliation(s)
- Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Nagarajan Kathiresan
- KAUST Supercomputing Core Lab (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ian Moot
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Kajla A, Schoen A, Paulson C, Yadav IS, Neelam K, Riera-Lizarazu O, Leonard J, Gill BS, Venglat P, Datla R, Poland J, Coleman G, Rawat N, Tiwari V. Physical mapping of the wheat genes in low-recombination regions: radiation hybrid mapping of the C-locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:159. [PMID: 37344686 DOI: 10.1007/s00122-023-04403-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
KEY MESSAGE This work reports the physical mapping of an important gene affecting spike compactness located in a low-recombination region of hexaploid wheat. This work paves the way for the eventual isolation and characterization of the factor involved but also opens up possibilities to use this approach to precisely map other wheat genes located on proximal parts of wheat chromosomes that show highly reduced recombination. Mapping wheat genes, in the centromeric and pericentromeric regions (~ 2/3rd of a given chromosome), poses a formidable challenge due to highly suppressed recombination. Using an example of compact spike locus (C-locus), this study provides an approach to precisely map wheat genes in the pericentromeric and centromeric regions that house ~ 30% of wheat genes. In club-wheat, spike compactness is controlled by the dominant C-locus, but previous efforts have failed to localize it, on a particular arm of chromosome 2D. We integrated radiation hybrid (RH) and high-resolution genetic mapping to locate C-locus on the short arm of chromosome 2D. Flanking markers of the C-locus span a physical distance of 11.0 Mb (231.0-242 Mb interval) and contain only 11 high-confidence annotated genes. This work demonstrates the value of this integrated strategy in mapping dominant genes in the low-recombination regions of the wheat genome. A comparison of the mapping resolutions of the RH and genetic maps using common anchored markers indicated that the RH map provides ~ 9 times better resolution that the genetic map even with much smaller population size. This study provides a broadly applicable approach to fine map wheat genes in regions of suppressed recombination.
Collapse
Affiliation(s)
- Anmol Kajla
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Adam Schoen
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Carl Paulson
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Inderjit Singh Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | | | | | - Jeff Leonard
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Raju Datla
- Global Institute of Food Security, Saskatoon, SK, Canada
| | - Jesse Poland
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Gary Coleman
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA
| | - Vijay Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, College Park, USA.
| |
Collapse
|
6
|
Kalendar R, Shustov AV, Akhmetollayev I, Kairov U. Designing Allele-Specific Competitive-Extension PCR-Based Assays for High-Throughput Genotyping and Gene Characterization. Front Mol Biosci 2022; 9:773956. [PMID: 35300118 PMCID: PMC8921500 DOI: 10.3389/fmolb.2022.773956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
Polymerase chain reaction (PCR) is a simple and rapid method that can detect nucleotide polymorphisms and sequence variation in basic research applications, agriculture, and medicine. Variants of PCR, collectively known as allele-specific PCR (AS-PCR), use a competitive reaction in the presence of allele-specific primers to preferentially amplify only certain alleles. This method, originally named by its developers as Kompetitive Allele Specific PCR (KASP), is an AS-PCR variant adapted for fluorescence-based detection of amplification results. We developed a bioinformatic tool for designing probe sequences for PCR-based genotyping assays. Probe sequences are designed in both directions, and both single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) may be targeted. In addition, the tool allows discrimination of up to four-allelic variants at a single SNP site. To increase both the reaction specificity and the discriminative power of SNP genotyping, each allele-specific primer is designed such that the penultimate base before the primer's 3' end base is positioned at the SNP site. The tool allows design of custom FRET cassette reporter systems for fluorescence-based assays. FastPCR is a user-friendly and powerful Java-based software that is freely available (http://primerdigital.com/tools/). Using the FastPCR environment and the tool for designing AS-PCR provides unparalleled flexibility for developing genotyping assays and specific and sensitive diagnostic PCR-based tests, which translates into a greater likelihood of research success.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Institute of Biotechnology HiLIFE, University of Helsinki, Helsinki, Finland
- PrimerDigital Ltd., Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Ulykbek Kairov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
7
|
Malla KB, Thapa G, Doohan FM. Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat. PLoS One 2021; 16:e0258726. [PMID: 34648604 PMCID: PMC8516198 DOI: 10.1371/journal.pone.0258726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.
Collapse
Affiliation(s)
- Keshav B. Malla
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Ganesh Thapa
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Fiona M. Doohan
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Wang JH, Xu ZM, Qiu XB, Li LL, Yu SY, Li T, Tang YY, Pu X, Zhang JY, Zhang HL, Liang JJ, Tang YW, Li W, Long H, Deng GB. Genetic and molecular characterization of determinant of six-rowed spike of barley carrying vrs1.a4. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3225-3236. [PMID: 34132847 DOI: 10.1007/s00122-021-03887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Decisive role of reduced vrs1 transcript abundance in six-rowed spike of barley carrying vrs1.a4 was genetically proved and its potential causes were preliminarily analyzed. Six-rowed spike 1 (vrs1) is the major determinant of the six-rowed spike phenotype of barley (Hordeum vulgare L.). Alleles of Vrs1 have been extensively investigated. Allele vrs1.a4 in six-rowed barley is unique in that it has the same coding sequence as Vrs1.b4 in two-rowed barley. The determinant of row-type in vrs1.a4 carriers has not been experimentally identified. Here, we identified Vrs1.b4 in two-rowed accessions and vrs1.a4 in six-rowed accessions from the Qinghai-Tibet Plateau at high frequency. Genetic analyses revealed a single nuclear gene accounting for row-type alteration in these accessions. Physical mapping identified a 0.08-cM (~ 554-kb) target interval on chromosome 2H, wherein Vrs1 was the most likely candidate gene. Further analysis of Vrs1 expression in offspring of the mapping populations or different Vrs1.b4 and vrs1.a4 lines confirmed that downregulated expression of vrs1.a4 causes six-rowed spike. Regulatory sequence analysis found a single 'TA' dinucleotide deletion in vrs1.a4 carriers within a 'TA' tandem-repeat-enriched region ~ 1 kb upstream of the coding region. DNA methylation levels did not correspond to the expression difference and therefore did not affect Vrs1 expression. More evidence is needed to verify the causal link between the 'TA' deletion and the downregulated Vrs1 expression and hence the six-rowed spike phenotype.
Collapse
Affiliation(s)
- Jin-Hui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhen-Mei Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Xue-Bing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Li-Lan Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Shui-Yang Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Yan-Yan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Juan-Yu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Hai-Li Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jun-Jun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Ya-Wei Tang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, Tibet, China
| | - Wei Li
- Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| | - Guang-Bing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Steadham J, Schulden T, Kalia B, Koo DH, Gill BS, Bowden R, Yadav IS, Chhuneja P, Erwin J, Tiwari V, Rawat N. An approach for high-resolution genetic mapping of distant wild relatives of bread wheat: example of fine mapping of Lr57 and Yr40 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2671-2686. [PMID: 34013456 DOI: 10.1007/s00122-021-03851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The article reports a powerful but simple approach for high-resolution mapping and eventual map-based cloning of agronomically important genes from distant relatives of wheat, using the already existing germplasm resources. Wild relatives of wheat are a rich reservoir of genetic diversity for its improvement. The effective utilization of distant wild relatives in isolation of agronomically important genes is hindered by the lack of recombination between the homoeologous chromosomes. In this study, we propose a simple yet powerful approach that can be applied for high-resolution mapping of a targeted gene from wheat's distant gene pool members. A wheat-Aegilops geniculata translocation line TA5602 with a small terminal segment from chromosome 5 Mg of Ae. geniculata translocated to 5D of wheat contains genes Lr57 and Yr40 for leaf rust and stripe rust resistance, respectively. To map these genes, TA5602 was crossed with a susceptible Ae. geniculata 5 Mg addition line. Chromosome pairing between the 5 Mg chromosomes of susceptible and resistant parents resulted in the development of a high-resolution mapping panel for the targeted genes. Next-generation-sequencing data from flow-sorted 5 Mg chromosome of Ae. geniculata allowed us to generate 5 Mg-specific markers. These markers were used to delineate Lr57 and Yr40 genes each to distinct ~ 1.5 Mb physical intervals flanked by gene markers on 5 Mg. The method presented here will allow researchers worldwide to utilize existing germplasm resources in genebanks and seed repositories toward routinely performing map-based cloning of important genes from tertiary gene pools of wheat.
Collapse
Affiliation(s)
- James Steadham
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Taylor Schulden
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - John Erwin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Chhabra B, Tiwari V, Gill BS, Dong Y, Rawat N. Discovery of a susceptibility factor for Fusarium head blight on chromosome 7A of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2273-2289. [PMID: 33834252 DOI: 10.1007/s00122-021-03825-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Discovery and mapping of a susceptibility factor located on the short arm of wheat chromosome 7A whose deletion makes plants resistant to Fusarium head blight. Fusarium head blight (FHB) disease of wheat caused by Fusarium spp. deteriorates both quantity and quality of the crop. Manipulation of susceptibility factors, the plant genes facilitating disease development, offers a novel and alternative strategy for enhancing FHB resistance in plants. In this study, a major effect susceptibility gene for FHB was identified on the short arm of chromosome 7A (7AS). Nullisomic-tetrasomic lines for homoeologous group-7 of wheat revealed dosage effect of the gene, with tetrasomic 7A being more susceptible than control Chinese Spring wheat, qualifying it as a genuine susceptibility factor. Five chromosome 7A inter-varietal substitution lines and a tetraploid Triticum dicoccoides 7A substitution line showed similar susceptibility as that of Chinese Spring, indicating toward the commonality of the susceptibility factor among these diverse genotypes. The susceptibility factor was named as Sf-Fhb-7AS and mapped on chromosome 7AS to a 48.5-50.5 Mb peri-centromeric region between del7AS-3 and del7AS-8. Our results showed that deletion of Sf-Fhb-7AS imparts 50-60% type 2 FHB resistance and its manipulation can be used to enhance resistance against FHB in wheat.
Collapse
Affiliation(s)
- Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Mahlandt A, Rawat N, Leonard J, Venglat P, Datla R, Meier N, Gill BS, Riera-Lizarazu O, Coleman G, Murphy AS, Tiwari VK. High-resolution mapping of the Mov-1 locus in wheat by combining radiation hybrid (RH) and recombination-based mapping approaches. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2303-2314. [PMID: 33830295 DOI: 10.1007/s00122-021-03827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
This work reports a quick method that integrates RH mapping and genetic mapping to map the dominant Mov-1 locus to a 1.1-Mb physical interval with a small number of candidate genes. Bread wheat is an important crop for global human population. Identification of genes and alleles controlling agronomic traits is essential toward sustainably increasing crop production. The unique multi-ovary (MOV) trait in wheat holds potential for improving yields and is characterized by the formation of 2-3 grains per spikelet. The genetic basis of the multi-ovary trait is known to be monogenic and dominant in nature. Its precise mapping and functional characterization is critical to utilizing this trait in a feasible manner. Previous mapping efforts of the locus controlling multiple ovary/pistil formation in the hexaploid wheat have failed to produce a consensus for a particular chromosome. We describe a mapping strategy integrating radiation hybrid mapping and high-resolution genetic mapping to locate the chromosomal position of the Mov-1 locus in hexaploid wheat. We used RH mapping approach using a panel of 188 lines to map the Mov-1 locus in the terminal part of long arm of wheat chromosome 2D with a map resolution of 1.67 Mb/cR1500. Then using a genetic population of MOV × Synthetic wheat of F2 lines, we delineated the Mov-1 locus to a 1.1-Mb physical region with a small number of candidate genes. This demonstrates the value of this integrated strategy to mapping dominant genes in wheat.
Collapse
Affiliation(s)
- Alexander Mahlandt
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Jeff Leonard
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR, USA
| | - Prakash Venglat
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Nathan Meier
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Gary Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA.
| |
Collapse
|
12
|
Perochon A, Benbow HR, Ślęczka-Brady K, Malla KB, Doohan FM. Analysis of the chromosomal clustering of Fusarium-responsive wheat genes uncovers new players in the defence against head blight disease. Sci Rep 2021; 11:7446. [PMID: 33811222 PMCID: PMC8018971 DOI: 10.1038/s41598-021-86362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harriet R Benbow
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarzyna Ślęczka-Brady
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Fracasso A, Vallino M, Staropoli A, Vinale F, Amaducci S, Carra A. Increased water use efficiency in miR396-downregulated tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110729. [PMID: 33487336 DOI: 10.1016/j.plantsci.2020.110729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs regulate plant development and responses to biotic and abiotic stresses but their impact on water use efficiency (WUE) is poorly known. Increasing WUE is a major task in crop improvement programs aimed to meet the challenges posed by the reduction in water availability associated with the ongoing climatic change. We have examined the physiological and molecular response to water stress of tomato (Solanum lycopersicum L.) plants downregulated for miR396 by target mimicry. In water stress conditions, miR396-downregulated plants displayed reduced transpiration and a less then proportional decrease in the photosynthetic rate that resulted in higher WUE. The increase in WUE was associated with faster foliar accumulation of abscisic acid (ABA), with the induction of several drought-protective genes and with the activation of the jasmonic acid (JA) and γ-aminobutyric acid (GABA) pathways. We propose a model in which the downregulation of miR396 leads to the activation of a complex molecular response to water stress. This response acts synergistically with a set of leaf morphological modifications to increase stomatal closure and preserve the efficiency of the photosynthetic activity, ultimately resulting in higher WUE.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Torino, Italy
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 80055 Portici, Italy; Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, 80137, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Carra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Torino, Italy.
| |
Collapse
|
14
|
Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y, Dong L, Li M, Zhang H, Zhang P, Zhu K, Li B, Deal KR, Huo N, Zhang Y, Luo MC, Liu S, Gu YQ, Li H, Liu Z. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. THE NEW PHYTOLOGIST 2020; 228:1011-1026. [PMID: 32569398 DOI: 10.1111/nph.16762] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/02/2020] [Indexed: 05/18/2023]
Abstract
Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.
Collapse
Affiliation(s)
- Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 4530003, China
| | - Lili Wang
- China Agricultural University, Beijing, 100193, China
| | - Jingting Li
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Yan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yong Qiang Gu
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Duarte-Delgado D, Dadshani S, Schoof H, Oyiga BC, Schneider M, Mathew B, Léon J, Ballvora A. Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait-specific candidate genes. BMC PLANT BIOLOGY 2020; 20:428. [PMID: 32938380 PMCID: PMC7493341 DOI: 10.1186/s12870-020-02616-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bread wheat is one of the most important crops for the human diet, but the increasing soil salinization is causing yield reductions worldwide. Improving salt stress tolerance in wheat requires the elucidation of the mechanistic basis of plant response to this abiotic stress factor. Although several studies have been performed to analyze wheat adaptation to salt stress, there are still some gaps to fully understand the molecular mechanisms from initial signal perception to the onset of responsive tolerance pathways. The main objective of this study is to exploit the dynamic salt stress transcriptome in underlying QTL regions to uncover candidate genes controlling salt stress tolerance in bread wheat. The massive analysis of 3'-ends sequencing protocol was used to analyze leave samples at osmotic and ionic phases. Afterward, stress-responsive genes overlapping QTL for salt stress-related traits in two mapping populations were identified. RESULTS Among the over-represented salt-responsive gene categories, the early up-regulation of calcium-binding and cell wall synthesis genes found in the tolerant genotype are presumably strategies to cope with the salt-related osmotic stress. On the other hand, the down-regulation of photosynthesis-related and calcium-binding genes, and the increased oxidative stress response in the susceptible genotype are linked with the greater photosynthesis inhibition at the osmotic phase. The specific up-regulation of some ABC transporters and Na+/Ca2+ exchangers in the tolerant genotype at the ionic stage indicates their involvement in mechanisms of sodium exclusion and homeostasis. Moreover, genes related to protein synthesis and breakdown were identified at both stress phases. Based on the linkage disequilibrium blocks, salt-responsive genes within QTL intervals were identified as potential components operating in pathways leading to salt stress tolerance. Furthermore, this study conferred evidence of novel regions with transcription in bread wheat. CONCLUSION The dynamic transcriptome analysis allowed the comparison of osmotic and ionic phases of the salt stress response and gave insights into key molecular mechanisms involved in the salt stress adaptation of contrasting bread wheat genotypes. The leveraging of the highly contiguous chromosome-level reference genome sequence assembly facilitated the QTL dissection by targeting novel candidate genes for salt tolerance.
Collapse
Affiliation(s)
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- INRES-Crop Bioinformatics, University of Bonn, Bonn, Germany
| | | | | | - Boby Mathew
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Ma JM, Heim CB, Humphry M, Nifong JM, Lewis RS. Characterization of Phn15.1, a Newly Identified Phytophthora nicotianae Resistance QTL in Nicotiana tabacum. PLANT DISEASE 2020; 104:1638-1646. [PMID: 32310718 DOI: 10.1094/pdis-10-19-2257-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora nicotianae is an oomycete that causes black shank, one of the most economically important diseases affecting tobacco production worldwide. Identification and introgression of novel genetic variability affecting partial genetic resistance to this pathogen is important because of the increased durability of partial resistance over time as compared with genes conferring immunity. A previous mapping study identified a quantitative trait locus (QTL), hereafter designated as Phn15.1, with a major effect on P. nicotianae resistance in tobacco. In this research, we describe significantly improved resistance of nearly isogenic lines (NILs) of flue-cured tobacco carrying the introgressed Phn15.1 region derived from highly resistant cigar tobacco cultivar Beinhart 1000. The Phn15.1 region appeared to act in an additive or partially dominant manner to positively affect resistance. To more finely resolve the position of the gene or genes underlying the Phn15.1 effect, the QTL was mapped with an increased number of molecular markers (single-nucleotide polymorphisms) identified to reside within the region. Development and evaluation of subNILs containing varying amounts of Beinhart 1000-derived Phn15.1-associated genetic material permitted the localization of the QTL to a genetic interval of approximately 2.7 centimorgans. Importantly, we were able to disassociate the Beinhart 1000 Phn15.1 resistance alleles from a functional NtCPS2 allele(s) which contributes to the accumulation of a diterpene leaf surface exudate considered undesirable for flue-cured and burley tobacco. Information from this research should be of value for marker-assisted introgression of Beinhart 1000-derived partial black shank resistance into flue-cured and burley tobacco breeding programs.
Collapse
Affiliation(s)
- Justin M Ma
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Crystal B Heim
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Matt Humphry
- Plant Biotechnology Division, British American Tobacco Company, Cambridge, U.K
| | - Jessica M Nifong
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| |
Collapse
|
17
|
Blake VC, Woodhouse MR, Lazo GR, Odell SG, Wight CP, Tinker NA, Wang Y, Gu YQ, Birkett CL, Jannink JL, Matthews DE, Hane DL, Michel SL, Yao E, Sen TZ. GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5513438. [PMID: 31210272 DOI: 10.1093/database/baz065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/13/2022]
Abstract
GrainGenes (https://wheat.pw.usda.gov or https://graingenes.org) is an international centralized repository for curated, peer-reviewed datasets useful to researchers working on wheat, barley, rye and oat. GrainGenes manages genomic, genetic, germplasm and phenotypic datasets through a dynamically generated web interface for facilitated data discovery. Since 1992, GrainGenes has served geneticists and breeders in both the public and private sectors on six continents. Recently, several new datasets were curated into the database along with new tools for analysis. The GrainGenes homepage was enhanced by making it more visually intuitive and by adding links to commonly used pages. Several genome assemblies and genomic tracks are displayed through the genome browsers at GrainGenes, including the Triticum aestivum (bread wheat) cv. 'Chinese Spring' IWGSC RefSeq v1.0 genome assembly, the Aegilops tauschii (D genome progenitor) Aet v4.0 genome assembly, the Triticum turgidum ssp. dicoccoides (wild emmer wheat) cv. 'Zavitan' WEWSeq v.1.0 genome assembly, a T. aestivum (bread wheat) pangenome, the Hordeum vulgare (barley) cv. 'Morex' IBSC genome assembly, the Secale cereale (rye) select 'Lo7' assembly, a partial hexaploid Avena sativa (oat) assembly and the Triticum durum cv. 'Svevo' (durum wheat) RefSeq Release 1.0 assembly. New genetic maps and markers were added and can be displayed through CMAP. Quantitative trait loci, genetic maps and genes from the Wheat Gene Catalogue are indexed and linked through the Wheat Information System (WheatIS) portal. Training videos were created to help users query and reach the data they need. GSP (Genome Specific Primers) and PIECE2 (Plant Intron Exon Comparison and Evolution) tools were implemented and are available to use. As more small grains reference sequences become available, GrainGenes will play an increasingly vital role in helping researchers improve crops.
Collapse
Affiliation(s)
- Victoria C Blake
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Margaret R Woodhouse
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Gerard R Lazo
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Sarah G Odell
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Yi Wang
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Yong Q Gu
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Clay L Birkett
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Jean-Luc Jannink
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA.,Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Dave E Matthews
- Robert Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - David L Hane
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Steve L Michel
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA
| | - Eric Yao
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Taner Z Sen
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA, USA.,Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
18
|
Perochon A, Kahla A, Vranić M, Jia J, Malla KB, Craze M, Wallington E, Doohan FM. A wheat NAC interacts with an orphan protein and enhances resistance to Fusarium head blight disease. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1892-1904. [PMID: 30821405 PMCID: PMC6737021 DOI: 10.1111/pbi.13105] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 05/05/2023]
Abstract
Taxonomically-restricted orphan genes play an important role in environmental adaptation, as recently demonstrated by the fact that the Pooideae-specific orphan TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhanced wheat resistance to the economically devastating Fusarium head blight (FHB) disease. Like most orphan genes, little is known about the cellular function of the encoded protein TaFROG, other than it interacts with the central stress regulator TaSnRK1α. Here, we functionally characterized a wheat (T. aestivum) NAC-like transcription factor TaNACL-D1 that interacts with TaFROG and investigated its' role in FHB using studies to assess motif analyses, yeast transactivation, protein-protein interaction, gene expression and the disease response of wheat lines overexpressing TaNACL-D1. TaNACL-D1 is a Poaceae-divergent NAC transcription factor that encodes a Triticeae-specific protein C-terminal region with transcriptional activity and a nuclear localisation signal. The TaNACL-D1/TaFROG interaction was detected in yeast and confirmed in planta, within the nucleus. Analysis of multi-protein interactions indicated that TaFROG could form simultaneously distinct protein complexes with TaNACL-D1 and TaSnRK1α in planta. TaNACL-D1 and TaFROG are co-expressed as an early response to both the causal fungal agent of FHB, Fusarium graminearum and its virulence factor deoxynivalenol (DON). Wheat lines overexpressing TaNACL-D1 were more resistant to FHB disease than wild type plants. Thus, we conclude that the orphan protein TaFROG interacts with TaNACL-D1, a NAC transcription factor that forms part of the disease response evolved within the Triticeae.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - Amal Kahla
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - Monika Vranić
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - Jianguang Jia
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | - Keshav B. Malla
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| | | | | | - Fiona M. Doohan
- UCD School of Biology and Environmental Science and Earth InstituteCollege of ScienceUniversity College DublinBelfield, Dublin 4Ireland
| |
Collapse
|
19
|
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H, Wang Q, Zhang G, Song X, Sun XZ. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC PLANT BIOLOGY 2019; 19:394. [PMID: 31510912 PMCID: PMC6737726 DOI: 10.1186/s12870-019-1989-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. RESULTS In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. CONCLUSIONS These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wenguan Zeng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jialing Xu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Lili Mao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haoran Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Qingkang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Xue-Zhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
20
|
Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1623-1635. [PMID: 30706614 PMCID: PMC6662106 DOI: 10.1111/pbi.13088] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co-transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium-delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain-regulatory genes, TaCKX2-1, TaGLW7, TaGW2, and TaGW8, in T0 , T1 , and T2 generation plants at an average edit rate of 10% without detecting off-target mutations in the most Cas9-active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160-bp deletion in TaCKX2-D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium-delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.
Collapse
Affiliation(s)
- Zhengzhi Zhang
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Lei Hua
- Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsSDUSA
| | - Ajay Gupta
- Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsSDUSA
| | - David Tricoli
- Plant Transformation FacilityUniversity of CaliforniaDavisCAUSA
| | | | - Bing Yang
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Wanlong Li
- Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsSDUSA
| |
Collapse
|
21
|
Development of SNP, KASP, and SSR Markers by BSR-Seq Technology for Saturation of Genetic Linkage Map and Efficient Detection of Wheat Powdery Mildew Resistance Gene Pm61. Int J Mol Sci 2019; 20:ijms20030750. [PMID: 30754626 PMCID: PMC6387370 DOI: 10.3390/ijms20030750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
The gene Pm61 that confers powdery mildew resistance has been previously identified on chromosome arm 4AL in Chinese wheat landrace Xuxusanyuehuang (XXSYH). To facilitate the use of Pm61 in breeding practices, the bulked segregant analysis-RNA-Seq (BSR-Seq) analysis, in combination with the information on the Chinese Spring reference genome sequence, was performed in the F2:3 mapping population of XXSYH × Zhongzuo 9504. Two single nucleotide polymorphism (SNP), two Kompetitive Allele Specific PCR (KASP), and six simple sequence repeat (SSR) markers, together with previously identified polymorphic markers, saturated the genetic linkage map for Pm61, especially in the proximal side of the target gene that was short of gene-linked markers. In the newly established genetic linkage map, Pm61 was located in a 0.71 cM genetic interval and can be detected in a high throughput scale by the KASP markers Xicsk8 and Xicsk13 or by the standard PCR-based markers Xicscx497 and Xicsx538. The newly saturated genetic linkage map will be useful in molecular marker assisted-selection of Pm61 in breeding for disease resistant cultivar and in its map-based cloning.
Collapse
|
22
|
Jung WJ, Seo YW. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene 2018; 684:82-94. [PMID: 30359739 DOI: 10.1016/j.gene.2018.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/05/2018] [Accepted: 10/19/2018] [Indexed: 11/26/2022]
Abstract
Although rye is one of the most cold-tolerant species among temperate cereals, its huge and complex genome has prevented us from identifying agronomically useful genes. However, advances in high-throughput sequencing technology are making it increasingly possible to investigate its genome. The C-repeat binding factor (CBF) gene family controls cold tolerance in plants and its members are well conserved among eudicots and monocots, among which there are diverse homologs. Despite its large genome, only a small number of CBF genes have been identified in rye. In this study, we explored high-throughput sequencing data of the rye genome and identified 12 novel CBF genes. Sequence analyses revealed that these genes contain signature sequences of the CBF family. Chromosomal localization of the genes by PCR using wheat-rye addition lines showed that most of these are located on the long arm of chromosome 5, but also on the long arm of chromosomes 2 and 6. On the basis of comparative analyses of CBF family members in the Triticeae, CBF proteins were divided into several groups according to phylogenetic relationship and conserved motifs. Light is essential to fully induce CBF gene expression and there is specificity in the response to different types of abiotic stresses in ScCBF genes. The results of our study will assist investigations of CBF genes in the Triticeae and the mechanism of cold tolerance through the CBF-dependent pathway in plants.
Collapse
Affiliation(s)
- Woo Joo Jung
- Department of Biosystems and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Yong Weon Seo
- Department of Biosystems and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
23
|
Wang H, Yu Z, Li B, Lang T, Li G, Yang Z. Characterization of New Wheat-Dasypyrum breviaristatum Introgression Lines with Superior Gene(s) for Spike Length and Stripe Rust Resistance. Cytogenet Genome Res 2018; 156:117-125. [PMID: 30308502 DOI: 10.1159/000493562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Dasypyrum breviaristatum (genome VbVb) contains potentially important traits for commercial wheat production. Chromosome 2Vb of D. breviaristatum carries several desirable agronomic characters, including long spike length as well as enhanced resistance to stripe rust, which are expressed in a common wheat background. In this study, wheat-D. breviaristatum 2Vb deletion lines were produced and identified by fluorescence in situ hybridization (FISH), and 74 molecular markers specific to D. breviaristatum chromosome 2Vb were physically localized in 4 distinct chromosomal regions. New wheat-D. breviaristatum 2Vb translocation lines were also characterized by FISH. The breakpoint of the translocation T3AS.3AL-2VbS was determined by physically mapped molecular markers. Field evaluation revealed that genes affecting plant height and spike length are located on fraction length (FL) 0.65-1.00 of 2VbS, while the stripe rust resistance gene(s) are located on FL 0.40-1.00 of D. breviaristatum chromosome 2VbL. The newly characterized wheat-Dasypyrum chromosomal introgressions are of potential value for the improvement of the yield and disease resistance of wheat.
Collapse
|
24
|
Rey E, Abrouk M, Keeble‐Gagnère G, Karafiátová M, Vrána J, Balzergue S, Soubigou‐Taconnat L, Brunaud V, Martin‐Magniette M, Endo TR, Bartoš J, Appels R, Doležel J. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1767-1777. [PMID: 29510004 PMCID: PMC6131412 DOI: 10.1111/pbi.12913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 05/03/2023]
Abstract
Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials.
Collapse
Affiliation(s)
- Elodie Rey
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Michael Abrouk
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Gabriel Keeble‐Gagnère
- Agriculture Research VictoriaDepartment of Economic DevelopmentJobsTransport and ResourcesAgriBioBundooraVIC 3083Australia
| | - Miroslava Karafiátová
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2CNRSINRAUniversité Paris‐SudUniversité EvryUniversité Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Paris DiderotSorbonne Paris‐CitéOrsayFrance
- IRHSUniversité d'AngersINRAAGROCAMPUS‐OuestSFR4207 QUASAVUniversité Bretagne LoireBeaucouzéFrance
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris Saclay IPS2CNRSINRAUniversité Paris‐SudUniversité EvryUniversité Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Paris DiderotSorbonne Paris‐CitéOrsayFrance
| | - Véronique Brunaud
- Institute of Plant Sciences Paris Saclay IPS2CNRSINRAUniversité Paris‐SudUniversité EvryUniversité Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Paris DiderotSorbonne Paris‐CitéOrsayFrance
| | - Marie‐Laure Martin‐Magniette
- Institute of Plant Sciences Paris Saclay IPS2CNRSINRAUniversité Paris‐SudUniversité EvryUniversité Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Paris DiderotSorbonne Paris‐CitéOrsayFrance
- UMR MIA‐ParisAgroParisTechINRAUniversité Paris‐SaclayParisFrance
| | - Takashi R. Endo
- Department of Plant Life ScienceFaculty of AgricultureRyukoku UniversityShigaJapan
| | - Jan Bartoš
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | | | | | - Jaroslav Doležel
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| |
Collapse
|