1
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
KMC3 and CHTKC: Best Scenarios, Deficiencies, and Challenges in High-Throughput Sequencing Data Analysis. ALGORITHMS 2022. [DOI: 10.3390/a15040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: K-mer frequency counting is an upstream process of many bioinformatics data analysis workflows. KMC3 and CHTKC are the representative partition-based k-mer counting and non-partition-based k-mer counting algorithms, respectively. This paper evaluates the two algorithms and presents their best applicable scenarios and potential improvements using multiple hardware contexts and datasets. Results: KMC3 uses less memory and runs faster than CHTKC on a regular configuration server. CHTKC is efficient on high-performance computing platforms with high available memory, multi-thread, and low IO bandwidth. When tested with various datasets, KMC3 is less sensitive to the number of distinct k-mers and is more efficient for tasks with relatively low sequencing quality and long k-mer. CHTKC performs better than KMC3 in counting assignments with large-scale datasets, high sequencing quality, and short k-mer. Both algorithms are affected by IO bandwidth, and decreasing the influence of the IO bottleneck is critical as our tests show improvement by filtering and compressing consecutive first-occurring k-mers in KMC3. Conclusions: KMC3 is more competitive for running counter on ordinary hardware resources, and CHTKC is more competitive for counting k-mers in super-scale datasets on higher-performance computing platforms. Reducing the influence of the IO bottleneck is essential for optimizing the k-mer counting algorithm, and filtering and compressing low-frequency k-mers is critical in relieving IO impact.
Collapse
|
3
|
Tang D, Li Y, Tan D, Fu J, Tang Y, Lin J, Zhao R, Du H, Zhao Z. KCOSS: an ultra-fast k-mer counter for assembled genome analysis. Bioinformatics 2022; 38:933-940. [PMID: 34849595 DOI: 10.1093/bioinformatics/btab797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The k-mer frequency in whole genome sequences provides researchers with an insightful perspective on genomic complexity, comparative genomics, metagenomics and phylogeny. The current k-mer counting tools are typically slow, and they require large memory and hard disk for assembled genome analysis. RESULTS We propose a novel and ultra-fast k-mer counting algorithm, KCOSS, to fulfill k-mer counting mainly for assembled genomes with segmented Bloom filter, lock-free queue, lock-free thread pool and cuckoo hash table. We optimize running time and memory consumption by recycling memory blocks, merging multiple consecutive first-occurrence k-mers into C-read, and writing a set of C-reads to disk asynchronously. KCOSS was comparatively tested with Jellyfish2, CHTKC and KMC3 on seven assembled genomes and three sequencing datasets in running time, memory consumption, and hard disk occupation. The experimental results show that KCOSS counts k-mer with less memory and disk while having a shorter running time on assembled genomes. KCOSS can be used to calculate the k-mer frequency not only for assembled genomes but also for sequencing data. AVAILABILITYAND IMPLEMENTATION The KCOSS software is implemented in C++. It is freely available on GitHub: https://github.com/kcoss-2021/KCOSS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Deyou Tang
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yucheng Li
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Daqiang Tan
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yelei Tang
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiabin Lin
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Rong Zhao
- School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Ju CJT, Jiang JY, Li R, Li Z, Wang W. TahcoRoll: fast genomic signature profiling via thinned automaton and rolling hash. MEDICAL REVIEW (2021) 2021; 1:114-125. [PMID: 35881666 PMCID: PMC9027990 DOI: 10.1515/mr-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/11/2021] [Indexed: 12/04/2022]
Abstract
Objectives Genomic signatures like k-mers have become one of the most prominent approaches to describe genomic data. As a result, myriad real-world applications, such as the construction of de Bruijn graphs in genome assembly, have been benefited by recognizing genomic signatures. In other words, an efficient approach of genomic signature profiling is an essential need for tackling high-throughput sequencing reads. However, most of the existing approaches only recognize fixed-size k-mers while many research studies have shown the importance of considering variable-length k-mers. Methods In this paper, we present a novel genomic signature profiling approach, TahcoRoll, by extending the Aho-Corasick algorithm (AC) for the task of profiling variable-length k-mers. We first group nucleotides into two clusters and represent each cluster with a bit. The rolling hash technique is further utilized to encode signatures and read patterns for efficient matching. Results In extensive experiments, TahcoRoll significantly outperforms the most state-of-the-art k-mer counters and has the capability of processing reads across different sequencing platforms on a budget desktop computer. Conclusions The single-thread version of TahcoRoll is as efficient as the eight-thread version of the state-of-the-art, JellyFish, while the eight-thread TahcoRoll outperforms the eight-thread JellyFish by at least four times.
Collapse
Affiliation(s)
- Chelsea J.-T. Ju
- Department of Computer Science, University of California, Los Angeles, USA
| | - Jyun-Yu Jiang
- Department of Computer Science, University of California, Los Angeles, USA
| | - Ruirui Li
- Department of Computer Science, University of California, Los Angeles, USA
| | - Zeyu Li
- Department of Computer Science, University of California, Los Angeles, USA
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, USA
| |
Collapse
|
5
|
Leinonen M, Salmela L. Extraction of long k-mers using spaced seeds. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34529572 DOI: 10.1109/tcbb.2021.3113131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extraction of k-mers from reads is an important task in many bioinformatics applications, such as all DNA sequence analysis methods based on de Bruijn graphs. These methods tend to be more accurate when the used k-mers are unique in the analyzed DNA, and thus the use of longer k-mers is preferred. When the read lengths of short read sequencing technologies increase, the error rate will become the determining factor for the largest possible value of k. Here we propose LoMeX which uses spaced seeds to extract long k-mers accurately even in the presence of sequencing errors. Our experiments show that LoMeX can extract long k-mers from current Illumina reads with a similar or higher recall than a standard k-mer counting tool. Furthermore, our experiments on simulated data show that when the read length further increases enabling even longer k-mers, the performance of standard k-mer counters declines, whereas LoMeX still extracts long k-mers successfully.
Collapse
|
6
|
Jiang P, Luo J, Wang Y, Deng P, Schmidt B, Tang X, Chen N, Wong L, Zhao L. kmcEx: memory-frugal and retrieval-efficient encoding of counted k-mers. Bioinformatics 2020; 35:4871-4878. [PMID: 31038666 DOI: 10.1093/bioinformatics/btz299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION K-mers along with their frequency have served as an elementary building block for error correction, repeat detection, multiple sequence alignment, genome assembly, etc., attracting intensive studies in k-mer counting. However, the output of k-mer counters itself is large; very often, it is too large to fit into main memory, leading to highly narrowed usability. RESULTS We introduce a novel idea of encoding k-mers as well as their frequency, achieving good memory saving and retrieval efficiency. Specifically, we propose a Bloom filter-like data structure to encode counted k-mers by coupled-bit arrays-one for k-mer representation and the other for frequency encoding. Experiments on five real datasets show that the average memory-saving ratio on all 31-mers is as high as 13.81 as compared with raw input, with 7 hash functions. At the same time, the retrieval time complexity is well controlled (effectively constant), and the false-positive rate is decreased by two orders of magnitude. AVAILABILITY AND IMPLEMENTATION The source codes of our algorithm are available at github.com/lzhLab/kmcEx. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peng Jiang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Luo
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yiqi Wang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Pingji Deng
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bertil Schmidt
- Institute of Computer Science, Johannes Gutenberg University Mainz, Mainz Germany
| | - Xiangjun Tang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ningjiang Chen
- School of Computing and Electronic Information, Guangxi University, Nanning, Guangxi, China
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,School of Computing and Electronic Information, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Wang J, Chen S, Dong L, Wang G. CHTKC: a robust and efficient k-mer counting algorithm based on a lock-free chaining hash table. Brief Bioinform 2020; 22:5841329. [PMID: 32438416 DOI: 10.1093/bib/bbaa063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Calculating the frequency of occurrence of each substring of length k in DNA sequences is a common task in many bioinformatics applications, including genome assembly, error correction, and sequence alignment. Although the problem is simple, efficient counting of datasets with high sequencing depth or large genome size is a challenge. RESULTS We propose a robust and efficient method, CHTKC, to solve the k-mer counting problem with a lock-free hash table that uses linked lists to resolve collisions. We also design new mechanisms to optimize memory usage and handle situations where memory is not enough to accommodate all k-mers. CHTKC has been thoroughly tested on seven datasets under multiple memory usage scenarios and compared with Jellyfish2 and KMC3. Our work shows that using a hash-table-based method to effectively solve the k-mer counting problem remains a feasible solution.
Collapse
|
8
|
Pan T, Flick P, Jain C, Liu Y, Aluru S. Kmerind: A Flexible Parallel Library for K-mer Indexing of Biological Sequences on Distributed Memory Systems. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1117-1131. [PMID: 28991750 DOI: 10.1109/tcbb.2017.2760829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Counting and indexing fixed length substrings, or $k$k-mers, in biological sequences is a key step in many bioinformatics tasks including genome alignment and mapping, genome assembly, and error correction. While advances in next generation sequencing technologies have dramatically reduced the cost and improved latency and throughput, few bioinformatics tools can efficiently process the datasets at the current generation rate of 1.8 terabases per 3-day experiment from a single sequencer. We present Kmerind, a high performance parallel $k$k-mer indexing library for distributed memory environments. The Kmerind library provides a set of simple and consistent APIs with sequential semantics and parallel implementations that are designed to be flexible and extensible. Kmerind's $k$k-mer counter performs similarly or better than the best existing $k$k-mer counting tools even on shared memory systems. In a distributed memory environment, Kmerind counts $k$k-mers in a 120 GB sequence read dataset in less than 13 seconds on 1024 Xeon CPU cores, and fully indexes their positions in approximately 17 seconds. Querying for 1 percent of the $k$k-mers in these indices can be completed in 0.23 seconds and 28 seconds, respectively. Kmerind is the first $k$k-mer indexing library for distributed memory environments, and the first extensible library for general $k$k-mer indexing and counting. Kmerind is available at https://github.com/ParBLiSS/kmerind.
Collapse
|
9
|
Li W, Freudenberg J, Freudenberg J. Alignment-free approaches for predicting novel Nuclear Mitochondrial Segments (NUMTs) in the human genome. Gene 2019; 691:141-152. [PMID: 30630097 DOI: 10.1016/j.gene.2018.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The nuclear human genome harbors sequences of mitochondrial origin, indicating an ancestral transfer of DNA from the mitogenome. Several Nuclear Mitochondrial Segments (NUMTs) have been detected by alignment-based sequence similarity search, as implemented in the Basic Local Alignment Search Tool (BLAST). Identifying NUMTs is important for the comprehensive annotation and understanding of the human genome. Here we explore the possibility of detecting NUMTs in the human genome by alignment-free sequence similarity search, such as k-mers (k-tuples, k-grams, oligos of length k) distributions. We find that when k=6 or larger, the k-mer approach and BLAST search produce almost identical results, e.g., detect the same set of NUMTs longer than 3 kb. However, when k=5 or k=4, certain signals are only detected by the alignment-free approach, and these may indicate yet unrecognized, and potentially more ancestral NUMTs. We introduce a "Manhattan plot" style representation of NUMT predictions across the genome, which are calculated based on the reciprocal of the Jensen-Shannon divergence between the nuclear and mitochondrial k-mer frequencies. The further inspection of the k-mer-based NUMT predictions however shows that most of them contain long-terminal-repeat (LTR) annotations, whereas BLAST-based NUMT predictions do not. Thus, similarity of the mitogenome to LTR sequences is recognized, which we validate by finding the mitochondrial k-mer distribution closer to those for transposable sequences and specifically, close to some types of LTR.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Jerome Freudenberg
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Jan Freudenberg
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
10
|
Manekar SC, Sathe SR. A benchmark study of k-mer counting methods for high-throughput sequencing. Gigascience 2018; 7:5140149. [PMID: 30346548 PMCID: PMC6280066 DOI: 10.1093/gigascience/giy125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
The rapid development of high-throughput sequencing technologies means that hundreds of gigabytes of sequencing data can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage. We also considered additional parameters such as disk usage, accuracy, parallelism, the impact of compressed input, performance in terms of counting large k values and the scalability of the application to larger datasets.We make specific recommendations for the setup of a current state-of-the-art program and suggestions for further development.
Collapse
Affiliation(s)
- Swati C Manekar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India
| | - Shailesh R Sathe
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India
| |
Collapse
|
11
|
Zhang J, Guo J, Zhang M, Yu X, Yu X, Guo W, Zeng T, Chen L. Efficient Mining Multi-mers in a Variety of Biological Sequences. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 17:949-958. [PMID: 29993642 DOI: 10.1109/tcbb.2018.2828313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Counting the occurrence frequency of each -mer in a biological sequence is a preliminary yet important step in many bioinformatics applications. However, most -mer counting algorithms rely on a given k to produce single-length -mers, which is inefficient for sequence analysis for different k. Moreover, existing -mer counters focus more on DNA and RNA sequences and less on protein ones. In practice, the analysis of -mers in protein sequences can provide substantial biological insights in structure, function and evolution. To this end, an efficient algorithm, called MulMer (Multiple-Mer mining), is proposed to mine -mers of various lengths termed multi-mers via inverted-index technique, which is orders of magnitude faster than the conventional forward-index methods. Moreover, to the best of our knowledge, MulMer is the first able to mine multi-mers in a variety of sequences, including DNARNA and protein sequences.
Collapse
|
12
|
Erbert M, Rechner S, Müller-Hannemann M. Gerbil: a fast and memory-efficient k-mer counter with GPU-support. Algorithms Mol Biol 2017; 12:9. [PMID: 28373894 PMCID: PMC5374613 DOI: 10.1186/s13015-017-0097-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/23/2017] [Indexed: 11/15/2022] Open
Abstract
Background A basic task in bioinformatics is the counting of k-mers in genome sequences. Existing k-mer counting tools are most often optimized for small k < 32 and suffer from excessive memory resource consumption or degrading performance for large k. However, given the technology trend towards long reads of next-generation sequencers, support for large k becomes increasingly important. Results We present the open source k-mer counting software Gerbil that has been designed for the efficient counting of k-mers for k ≥ 32. Our software is the result of an intensive process of algorithm engineering. It implements a two-step approach. In the first step, genome reads are loaded from disk and redistributed to temporary files. In a second step, the k-mers of each temporary file are counted via a hash table approach. In addition to its basic functionality, Gerbil can optionally use GPUs to accelerate the counting step. In a set of experiments with real-world genome data sets, we show that Gerbil is able to efficiently support both small and large k. Conclusions While Gerbil’s performance is comparable to existing state-of-the-art open source k-mer counting tools for small k < 32, it vastly outperforms its competitors for large k, thereby enabling new applications which require large values of k. Electronic supplementary material The online version of this article (doi:10.1186/s13015-017-0097-9) contains supplementary material, which is available to authorized users.
Collapse
|