1
|
Gabrieli T, Michaeli Y, Avraham S, Torchinsky D, Margalit S, Schütz L, Juhasz M, Coruh C, Arbib N, Zhou ZS, Law JA, Weinhold E, Ebenstein Y. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res 2022; 50:e92. [PMID: 35657088 PMCID: PMC9458417 DOI: 10.1093/nar/gkac460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500–1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Avraham
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Torchinsky
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Matyas Juhasz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nissim Arbib
- Department of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts02115, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056Aachen, Germany
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, The Center for Physics and Chemistry of Living Systems, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Yuan Y, Chung CYL, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020; 18:2051-2062. [PMID: 32802277 PMCID: PMC7419273 DOI: 10.1016/j.csbj.2020.07.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent advances in optical mapping have allowed the construction of improved genome assemblies with greater contiguity. Optical mapping also enables genome comparison and identification of large-scale structural variations. Association of these large-scale genomic features with biological functions is an important goal in plant and animal breeding and in medical research. Optical mapping has also been used in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we review the development of optical mapping in recent decades to illustrate its importance in genomic research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss the challenges required to facilitate the optimization of optical mapping and improve its future development and application.
Collapse
Key Words
- 3D, three-dimensional
- DBG, de Bruijn graph
- DLS, direct label and strain
- DNA, deoxyribonucleic acid
- Genome assembly
- Hi-C, high-throughput chromosome conformation capture
- Mb, million base pair
- Next generation sequencing
- OLC, overlap-layout-consensus
- Optical mapping
- PCR, polymerase chain reaction
- PacBio, Pacific Biosciences
- SRS, short-read sequencing
- SV, structural variation
- Structural variation
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire Yik-Lok Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Sharim H, Grunwald A, Gabrieli T, Michaeli Y, Margalit S, Torchinsky D, Arielly R, Nifker G, Juhasz M, Gularek F, Almalvez M, Dufault B, Chandra SS, Liu A, Bhattacharya S, Chen YW, Vilain E, Wagner KR, Pevsner J, Reifenberger J, Lam ET, Hastie AR, Cao H, Barseghyan H, Weinhold E, Ebenstein Y. Long-read single-molecule maps of the functional methylome. Genome Res 2019; 29:646-656. [PMID: 30846530 PMCID: PMC6442387 DOI: 10.1101/gr.240739.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/25/2019] [Indexed: 01/23/2023]
Abstract
We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair–scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements. These long single-molecule reads allow for methylation variation calling and analysis of large structural aberrations such as pathogenic macrosatellite arrays not accessible to single-cell second-generation sequencing. The method is applied here to study facioscapulohumeral muscular dystrophy (FSHD), simultaneously recording the haplotype, copy number, and methylation status of the disease-associated, highly repetitive locus on Chromosome 4q.
Collapse
Affiliation(s)
- Hila Sharim
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Assaf Grunwald
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Tslil Gabrieli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Dmitry Torchinsky
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Rani Arielly
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Gil Nifker
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Matyas Juhasz
- Institute of Organic Chemistry RWTH Aachen University, D-52056 Aachen, Germany
| | - Felix Gularek
- Institute of Organic Chemistry RWTH Aachen University, D-52056 Aachen, Germany
| | - Miguel Almalvez
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Brandon Dufault
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Sreetama Sen Chandra
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Alexander Liu
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Kathryn R Wagner
- Kennedy Krieger Institute and Departments of Neurology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Jonathan Pevsner
- Kennedy Krieger Institute and Departments of Neurology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Ernest T Lam
- Bionano Genomics, Incorporated, San Diego, California 92121, USA
| | - Alex R Hastie
- Bionano Genomics, Incorporated, San Diego, California 92121, USA
| | - Han Cao
- Bionano Genomics, Incorporated, San Diego, California 92121, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Elmar Weinhold
- Institute of Organic Chemistry RWTH Aachen University, D-52056 Aachen, Germany
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| |
Collapse
|
4
|
Gabrieli T, Sharim H, Nifker G, Jeffet J, Shahal T, Arielly R, Levi-Sakin M, Hoch L, Arbib N, Michaeli Y, Ebenstein Y. Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS NANO 2018; 12:7148-7158. [PMID: 29924591 PMCID: PMC6114841 DOI: 10.1021/acsnano.8b03023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/20/2018] [Indexed: 05/25/2023]
Abstract
The epigenetic mark 5-hydroxymethylcytosine (5-hmC) is a distinct product of active DNA demethylation that is linked to gene regulation, development, and disease. In particular, 5-hmC levels dramatically decline in many cancers, potentially serving as an epigenetic biomarker. The noise associated with next-generation 5-hmC sequencing hinders reliable analysis of low 5-hmC containing tissues such as blood and malignant tumors. Additionally, genome-wide 5-hmC profiles generated by short-read sequencing are limited in providing long-range epigenetic information relevant to highly variable genomic regions, such as the 3.7 Mbp disease-related Human Leukocyte Antigen (HLA) region. We present a long-read, highly sensitive single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp to 1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression. The single-molecule concept provides information on the distribution and coexistence of 5-hmC signals at multiple genomic loci on the same genomic DNA molecule, revealing long-range correlations and cell-to-cell epigenetic variation.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Sharim
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nifker
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Jeffet
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rani Arielly
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levi-Sakin
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lily Hoch
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nissim Arbib
- Department
of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|