1
|
Karimi-Sani I, Sharifi M, Abolpour N, Lotfi M, Atapour A, Takhshid MA, Sahebkar A. Drug repositioning for Parkinson's disease: An emphasis on artificial intelligence approaches. Ageing Res Rev 2025; 104:102651. [PMID: 39755176 DOI: 10.1016/j.arr.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1-2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials. A search was conducted in three databases Web of Science, Scopus, and PubMed. We reviewed the data related to the last years (1975-present) to identify those drugs currently being proposed for repositioning in PD. Moreover, we reviewed the present status of the computational approach, including AI/Machine Learning (AI/ML)-powered pharmaceutical discovery efforts and their implementation in PD treatment. It was found that the number of drug repositioning studies for PD has increased recently. Repositioning of drugs in PD is taking off, and scientific communities are increasingly interested in communicating its results and finding effective treatment alternatives for PD. A better chance of success in PD drug discovery has been made possible due to AI/ML algorithm advancements. In addition to the experimentation stage of drug discovery, it is also important to leverage AI in the planning stage of clinical trials to make them more effective. New AI-based models or solutions that increase the success rate of drug development are greatly needed.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrdad Sharifi
- Emergency Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahid Abolpour
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrzad Lotfi
- Artificial Intelligence Department, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad-Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li L, Dannenfelser R, Cruz C, Yao V. A best-match approach for gene set analyses in embedding spaces. Genome Res 2024; 34:1421-1433. [PMID: 39231608 PMCID: PMC11529866 DOI: 10.1101/gr.279141.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Embedding methods have emerged as a valuable class of approaches for distilling essential information from complex high-dimensional data into more accessible lower-dimensional spaces. Applications of embedding methods to biological data have demonstrated that gene embeddings can effectively capture physical, structural, and functional relationships between genes. However, this utility has been primarily realized by using gene embeddings for downstream machine-learning tasks. Much less has been done to examine the embeddings directly, especially analyses of gene sets in embedding spaces. Here, we propose an Algorithm for Network Data Embedding and Similarity (ANDES), a novel best-match approach that can be used with existing gene embeddings to compare gene sets while reconciling gene set diversity. This intuitive method has important downstream implications for improving the utility of embedding spaces for various tasks. Specifically, we show how ANDES, when applied to different gene embeddings encoding protein-protein interactions, can be used as a novel overrepresentation- and rank-based gene set enrichment analysis method that achieves state-of-the-art performance. Additionally, ANDES can use multiorganism joint gene embeddings to facilitate functional knowledge transfer across organisms, allowing for phenotype mapping across model systems. Our flexible, straightforward best-match methodology can be extended to other embedding spaces with diverse community structures between set elements.
Collapse
Affiliation(s)
- Lechuan Li
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Ruth Dannenfelser
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Charlie Cruz
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Vicky Yao
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
3
|
Li X, Zan X, Liu T, Dong X, Zhang H, Li Q, Bao Z, Lin J. Integrated edge information and pathway topology for drug-disease associations. iScience 2024; 27:110025. [PMID: 38974972 PMCID: PMC11226970 DOI: 10.1016/j.isci.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Drug repurposing is a promising approach to find new therapeutic indications for approved drugs. Many computational approaches have been proposed to prioritize candidate anticancer drugs by gene or pathway level. However, these methods neglect the changes in gene interactions at the edge level. To address the limitation, we develop a computational drug repurposing method (iEdgePathDDA) based on edge information and pathway topology. First, we identify drug-induced and disease-related edges (the changes in gene interactions) within pathways by using the Pearson correlation coefficient. Next, we calculate the inhibition score between drug-induced edges and disease-related edges. Finally, we prioritize drug candidates according to the inhibition score on all disease-related edges. Case studies show that our approach successfully identifies new drug-disease pairs based on CTD database. Compared to the state-of-the-art approaches, the results demonstrate our method has the superior performance in terms of five metrics across colorectal, breast, and lung cancer datasets.
Collapse
Affiliation(s)
- Xianbin Li
- School of Computer and Big Data Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Xiangzhen Zan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 520000, China
| | - Tao Liu
- School of Computer and Big Data Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Xiwei Dong
- School of Computer and Big Data Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Haqi Zhang
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Qizhang Li
- Innovative Drug R&D Center, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Zhenshen Bao
- College of Information Engineering, Taizhou University, Taizhou 225300, Jiangsu, China
| | - Jie Lin
- Department of Pharmacy, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, China
| |
Collapse
|
4
|
Zhang H, Zhou Y, Zhang Z, Sun H, Pan Z, Mou M, Zhang W, Ye Q, Hou T, Li H, Hsieh CY, Zhu F. Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction. Anal Chem 2024. [PMID: 39011990 DOI: 10.1021/acs.analchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug-drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
Collapse
Affiliation(s)
- Hanyu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Honap S, Jairath V, Danese S, Peyrin-Biroulet L. Navigating the complexities of drug development for inflammatory bowel disease. Nat Rev Drug Discov 2024; 23:546-562. [PMID: 38778181 DOI: 10.1038/s41573-024-00953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) - consisting of ulcerative colitis and Crohn's disease - is a complex, heterogeneous, immune-mediated inflammatory condition with a multifactorial aetiopathogenesis. Despite therapeutic advances in this arena, a ceiling effect has been reached with both single-agent monoclonal antibodies and advanced small molecules. Therefore, there is a need to identify novel targets, and the development of companion biomarkers to select responders is vital. In this Perspective, we examine how advances in machine learning and tissue engineering could be used at the preclinical stage where attrition rates are high. For novel agents reaching clinical trials, we explore factors decelerating progression, particularly the decline in IBD trial recruitment, and assess how innovative approaches such as reconfiguring trial designs, harmonizing end points and incorporating digital technologies into clinical trials can address this. Harnessing opportunities at each stage of the drug development process may allow for incremental gains towards more effective therapies.
Collapse
Affiliation(s)
- Sailish Honap
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- INSERM, NGERE, University of Lorraine, Nancy, France.
- FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD Center, Neuilly sur Seine, France.
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Al-Odat OS, Nelson E, Budak-Alpdogan T, Jonnalagadda SC, Desai D, Pandey MK. Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients. Cancers (Basel) 2024; 16:2381. [PMID: 39001443 PMCID: PMC11240591 DOI: 10.3390/cancers16132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Emily Nelson
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | | | - Dhimant Desai
- Department of Pharmacology, Penn State Neuroscience Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
| |
Collapse
|
7
|
Israr J, Alam S, Kumar A. System biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:221-245. [PMID: 38789180 DOI: 10.1016/bs.pmbts.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Drug repurposing, or drug repositioning, refers to the identification of alternative therapeutic applications for established medications that go beyond their initial indications. This strategy has becoming increasingly popular since it has the potential to significantly reduce the overall costs of drug development by around $300 million. System biology methodologies have been employed to facilitate medication repurposing, encompassing computational techniques such as signature matching and network-based strategies. These techniques utilize pre-existing drug-related data types and databases to find prospective repurposed medications that have minimal or acceptable harmful effects on patients. The primary benefit of medication repurposing in comparison to drug development lies in the fact that approved pharmaceuticals have already undergone multiple phases of clinical studies, thereby possessing well-established safety and pharmacokinetic properties. Utilizing system biology methodologies in medication repurposing offers the capacity to expedite the discovery of viable candidates for drug repurposing and offer novel perspectives for structure-based drug design.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, India; Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
8
|
Zarei P, Ghasemi F. The Application of Artificial Intelligence and Drug Repositioning for the Identification of Fibroblast Growth Factor Receptor Inhibitors: A Review. Adv Biomed Res 2024; 13:9. [PMID: 38525398 PMCID: PMC10958741 DOI: 10.4103/abr.abr_170_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 03/26/2024] Open
Abstract
Artificial intelligence talks about modeling intelligent behavior through a computer with the least human involvement. Drug repositioning techniques based on artificial intelligence accelerate the research process and decrease the cost of experimental studies. Dysregulation of fibroblast growth factor (FGF) receptors as the tyrosine kinase family of receptors plays a vital role in a wide range of malignancies. Because of their functional significance, they were considered promising drug targets for the therapy of various cancers. This review has summarized small molecules capable of inhibiting FGF receptors that progressed using artificial intelligence and repositioning drugs examined in clinical trials associated with cancer therapy. This review is based on a literature search in PubMed, Web of Science, Scopus EMBASE, and Google Scholar databases to gather the necessary information in each chapter by employing keywords like artificial intelligence, computational drug design, drug repositioning, and FGF receptor inhibitors. To achieve this goal, a spacious literature review of human studies in these fields-published over the last 20 decades-was performed. According to published reports, nonselective FGF receptor inhibitors can be used for cancer management, and multitarget kinase inhibitors are the first drug class approved due to more advanced clinical studies. For example, AZD4547 and BGJ398 are gradually entering the consumption cycle and are good options as combined treatments. Artificial intelligence and drug repositioning methods can help preselect suitable drug targets more successfully for future inhibition of carcinogenicity.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Liu F, Patt A, Chen C, Huang R, Xu Y, Mathé EA, Zhu Q. Exploring NCATS in-house biomedical data for evidence-based drug repurposing. PLoS One 2024; 19:e0289518. [PMID: 38271343 PMCID: PMC10810548 DOI: 10.1371/journal.pone.0289518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024] Open
Abstract
Drug repurposing is a strategy for identifying new uses of approved or investigational drugs that are outside the scope of the original medical indication. Even though many repurposed drugs have been found serendipitously in the past, the increasing availability of large volumes of biomedical data has enabled more systemic, data-driven approaches for drug candidate identification. At National Center of Advancing Translational Sciences (NCATS), we invent new methods to generate new data and information publicly available to spur innovation and scientific discovery. In this study, we aimed to explore and demonstrate biomedical data generated and collected via two NCATS research programs, the Toxicology in the 21st Century program (Tox21) and the Biomedical Data Translator (Translator) for the application of drug repurposing. These two programs provide complementary types of biomedical data from uncovering underlying biological mechanisms with bioassay screening data from Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined from the Translator towards drug repurposing. 129 chemical clusters have been generated and three of them have been further investigated for drug repurposing candidate identification, which is detailed as case studies.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrew Patt
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Chloe Chen
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Yanji Xu
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ewy A. Mathé
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| | - Qian Zhu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| |
Collapse
|
10
|
Pellegrini M. Advances in Network-Based Drug Repositioning. LECTURE NOTES IN COMPUTER SCIENCE 2024:99-114. [DOI: 10.1007/978-3-031-55248-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Dutta S, Ghosh A. Case Study-Based Approaches of Systems Biology in Addressing Infectious Diseases. SYSTEMS BIOLOGY APPROACHES: PREVENTION, DIAGNOSIS, AND UNDERSTANDING MECHANISMS OF COMPLEX DISEASES 2024:115-143. [DOI: 10.1007/978-981-99-9462-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Muniyappan S, Rayan AXA, Varrieth GT. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. J Biomed Inform 2023; 147:104528. [PMID: 37858852 DOI: 10.1016/j.jbi.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
MOTIVATION Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
13
|
Li X, Liao M, Wang B, Zan X, Huo Y, Liu Y, Bao Z, Xu P, Liu W. A drug repurposing method based on inhibition effect on gene regulatory network. Comput Struct Biotechnol J 2023; 21:4446-4455. [PMID: 37731599 PMCID: PMC10507583 DOI: 10.1016/j.csbj.2023.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Numerous computational drug repurposing methods have emerged as efficient alternatives to costly and time-consuming traditional drug discovery approaches. Some of these methods are based on the assumption that the candidate drug should have a reversal effect on disease-associated genes. However, such methods are not applicable in the case that there is limited overlap between disease-related genes and drug-perturbed genes. In this study, we proposed a novel Drug Repurposing method based on the Inhibition Effect on gene regulatory network (DRIE) to identify potential drugs for cancer treatment. DRIE integrated gene expression profile and gene regulatory network to calculate inhibition score by using the shortest path in the disease-specific network. The results on eleven datasets indicated the superior performance of DRIE when compared to other state-of-the-art methods. Case studies showed that our method effectively discovered novel drug-disease associations. Our findings demonstrated that the top-ranked drug candidates had been already validated by CTD database. Additionally, it clearly identified potential agents for three cancers (colorectal, breast, and lung cancer), which was beneficial when annotating drug-disease relationships in the CTD. This study proposed a novel framework for drug repurposing, which would be helpful for drug discovery and development.
Collapse
Affiliation(s)
- Xianbin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Minzhen Liao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Bing Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiangzhen Zan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yanhao Huo
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yue Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Zhenshen Bao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
14
|
Liu F, Patt A, Chen C, Huang R, Xu Y, Mathé EA, Zhu Q. Exploring NCATS In-House Biomedical Data for Evidence-based Drug Repurposing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550045. [PMID: 37546930 PMCID: PMC10401966 DOI: 10.1101/2023.07.21.550045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Drug repurposing is a strategy for identifying new uses of approved or investigational drugs that are outside the scope of the original medical indication. Even though many repurposed drugs have been found serendipitously in the past, the increasing availability of large volumes of biomedical data has enabled more systemic, data-driven approaches for drug candidate identification. At National Center of Advancing Translational Sciences (NCATS), we invent new methods to generate new data and information publicly available to spur innovation and scientific discovery. In this study, we aimed to explore and demonstrate biomedical data generated and collected via two NCATS research programs, the Toxicology in the 21st Century program (Tox21) and the Biomedical Data Translator (Translator) for the application of drug repurposing. These two programs provide complementary types of biomedical data from uncovering underlying biological mechanisms with bioassay screening data from Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined from the Translator towards drug repurposing. 129 chemical clusters have been generated and three of them have been further investigated for drug repurposing candidate identification, which is detailed as case studies.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD
| | - Andrew Patt
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD
| | - Chloe Chen
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD
| | - Yanji Xu
- Division of Rare Diseases Research Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD
| | - Ewy A Mathé
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD
| | - Qian Zhu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD
| |
Collapse
|
15
|
Zhou H, Liu H, Yu Y, Yuan X, Xiao L. Informatics on Drug Repurposing for Breast Cancer. Drug Des Devel Ther 2023; 17:1933-1943. [PMID: 37405253 PMCID: PMC10315146 DOI: 10.2147/dddt.s417563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
Moving a new drug from bench to bedside is a long and arduous process. The tactic of drug repurposing, which solves "new" diseases with "old" existing drugs, is more efficient and economical than conventional ab-initio way for drug development. Information technology has dramatically changed the paradigm of biomedical research in the new century, and drug repurposing studies have been significantly accelerated by implementing informatics techniques related to genomics, systems biology and biophysics during the past few years. A series of remarkable achievements in this field comes with the practical applications of in silico approaches including transcriptomic signature matching, gene-connection-based scanning, and simulated structure docking in repositioning drug therapies against breast cancer. In this review, we systematically curated these impressive accomplishments with summarization of the main findings on potentially repurposable drugs, and provide our insights into the current issues as well as future directions of the field. With the prospective improvement in reliability, the computer-assisted repurposing strategy will play a more critical role in drug research and development.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, Hunan, People’s Republic of China
| | - Hongdou Liu
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
| | - Yan Yu
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
| | - Xiao Yuan
- Department of Laboratory Diagnosis, Changsha Kingmed Center for Clinical Laboratory, Changsha, Hunan, People’s Republic of China
- Department of Laboratory Diagnosis, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Ling Xiao
- Department of Histology and Embryology of Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
16
|
Ahmed F, Samantasinghar A, Manzoor Soomro A, Kim S, Hyun Choi K. A systematic review of computational approaches to understand cancer biology for informed drug repurposing. J Biomed Inform 2023; 142:104373. [PMID: 37120047 DOI: 10.1016/j.jbi.2023.104373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Cancer is the second leading cause of death globally, trailing only heart disease. In the United States alone, 1.9 million new cancer cases and 609,360 deaths were recorded for 2022. Unfortunately, the success rate for new cancer drug development remains less than 10%, making the disease particularly challenging. This low success rate is largely attributed to the complex and poorly understood nature of cancer etiology. Therefore, it is critical to find alternative approaches to understanding cancer biology and developing effective treatments. One such approach is drug repurposing, which offers a shorter drug development timeline and lower costs while increasing the likelihood of success. In this review, we provide a comprehensive analysis of computational approaches for understanding cancer biology, including systems biology, multi-omics, and pathway analysis. Additionally, we examine the use of these methods for drug repurposing in cancer, including the databases and tools that are used for cancer research. Finally, we present case studies of drug repurposing, discussing their limitations and offering recommendations for future research in this area.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea
| | | | | | - Sejong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
17
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Sarojamma V, Gupta MK, Shaik JB, Vadde R. Old drugs and new opportunities—Drug repurposing in colon cancer prevention. COMPUTATIONAL METHODS IN DRUG DISCOVERY AND REPURPOSING FOR CANCER THERAPY 2023:223-235. [DOI: 10.1016/b978-0-443-15280-1.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
19
|
Munj SA, Taz TA, Arslanturk S, Heath EI. Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies. Front Genet 2022; 13:1015531. [PMID: 36583025 PMCID: PMC9792769 DOI: 10.3389/fgene.2022.1015531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments.
Collapse
Affiliation(s)
- Seeya Awadhut Munj
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tasnimul Alam Taz
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Suzan Arslanturk
- Department of Computer Science, Wayne State University, Detroit, MI, United States,*Correspondence: Suzan Arslanturk,
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
20
|
Song Y, Cui H, Zhang T, Yang T, Li X, Xuan P. Prediction of Drug-Related Diseases Through Integrating Pairwise Attributes and Neighbor Topological Structures. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2963-2974. [PMID: 34133286 DOI: 10.1109/tcbb.2021.3089692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying new disease indications for the approved drugs can help reduce the cost and time of drug development. Most of the recent methods focus on exploiting the various information related to drugs and diseases for predicting the candidate drug-disease associations. However, the previous methods failed to deeply integrate the neighborhood topological structure and the node attributes of an interested drug-disease node pair. We propose a new prediction method, ANPred, to learn and integrate pairwise attribute information and neighbor topology information from the similarities and associations related to drugs and diseases. First, a bi-layer heterogeneous network with intra-layer and inter-layer connections is established to combine the drug similarities, the disease similarities, and the drug-disease associations. Second, the embedding of a pair of drug and disease is constructed based on integrating multiple biological premises about drugs and diseases. The learning framework based on multi-layer convolutional neural networks is designed to learn the attribute representation of the pair of drug and disease nodes from its embedding. The sequences composed of neighbor nodes are formed based on random walk on the heterogeneous network. A framework based on fully-connected autoencoder and skip-gram module is constructed to learn the neighbor topological representations of nodes. The cross-validation results indicate the performance of ANPred is superior to several state-of-the-art methods. The case studies on 5 drugs further confirm the ability of ANPred in discovering the potential drug-disease association candidates.
Collapse
|
21
|
Salame N, Fooks K, El-Hachem N, Bikorimana JP, Mercier FE, Rafei M. Recent Advances in Cancer Drug Discovery Through the Use of Phenotypic Reporter Systems, Connectivity Mapping, and Pooled CRISPR Screening. Front Pharmacol 2022; 13:852143. [PMID: 35795568 PMCID: PMC9250974 DOI: 10.3389/fphar.2022.852143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-omic approaches offer an unprecedented overview of the development, plasticity, and resistance of cancer. However, the translation from anti-cancer compounds identified in vitro to clinically active drugs have a notoriously low success rate. Here, we review how technical advances in cell culture, robotics, computational biology, and development of reporter systems have transformed drug discovery, enabling screening approaches tailored to clinically relevant functional readouts (e.g., bypassing drug resistance). Illustrating with selected examples of “success stories,” we describe the process of phenotype-based high-throughput drug screening to target malignant cells or the immune system. Second, we describe computational approaches that link transcriptomic profiling of cancers with existing pharmaceutical compounds to accelerate drug repurposing. Finally, we review how CRISPR-based screening can be applied for the discovery of mechanisms of drug resistance and sensitization. Overall, we explore how the complementary strengths of each of these approaches allow them to transform the paradigm of pre-clinical drug development.
Collapse
Affiliation(s)
- Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Katharine Fooks
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Nehme El-Hachem
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - François E. Mercier
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- *Correspondence: François E. Mercier, ; Moutih Rafei,
| |
Collapse
|
22
|
MotieGhader H, Tabrizi-Nezhadi P, Deldar Abad Paskeh M, Baradaran B, Mokhtarzadeh A, Hashemi M, Lanjanian H, Jazayeri SM, Maleki M, Khodadadi E, Nematzadeh S, Kiani F, Maghsoudloo M, Masoudi-Nejad A. Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug–gene interaction networks analysis. Sci Rep 2022; 12:9417. [PMID: 35676421 PMCID: PMC9177601 DOI: 10.1038/s41598-022-13719-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the most common cancer in men and women. This cancer is divided into two main types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Around 85 to 90 percent of lung cancers are NSCLC. Repositioning potent candidate drugs in NSCLC treatment is one of the important topics in cancer studies. Drug repositioning (DR) or drug repurposing is a method for identifying new therapeutic uses of existing drugs. The current study applies a computational drug repositioning method to identify candidate drugs to treat NSCLC patients. To this end, at first, the transcriptomics profile of NSCLC and healthy (control) samples was obtained from the GEO database with the accession number GSE21933. Then, the gene co-expression network was reconstructed for NSCLC samples using the WGCNA, and two significant purple and magenta gene modules were extracted. Next, a list of transcription factor genes that regulate purple and magenta modules' genes was extracted from the TRRUST V2.0 online database, and the TF–TG (transcription factors–target genes) network was drawn. Afterward, a list of drugs targeting TF–TG genes was obtained from the DGIdb V4.0 database, and two drug–gene interaction networks, including drug-TG and drug-TF, were drawn. After analyzing gene co-expression TF–TG, and drug–gene interaction networks, 16 drugs were selected as potent candidates for NSCLC treatment. Out of 16 selected drugs, nine drugs, namely Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel, were chosen from the drug-TG sub-network. In addition, nine drugs, including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were selected from the drug-TF sub-network. Methotrexate and Dexamethasone are common in drug-TG and drug-TF sub-networks. In conclusion, this study proposed 16 drugs as potent candidates for NSCLC treatment through analyzing gene co-expression, TF–TG, and drug–gene interaction networks.
Collapse
|
23
|
A comprehensive review of Artificial Intelligence and Network based approaches to drug repurposing in Covid-19. Biomed Pharmacother 2022; 153:113350. [PMID: 35777222 PMCID: PMC9236981 DOI: 10.1016/j.biopha.2022.113350] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Conventional drug discovery and development is tedious and time-taking process; because of which it has failed to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid-19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time requirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile platform for repurposing as the network biology is used to model the interactions between variety of biological concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug repurposing while specifically focusing on the applications of network-based approach to drug repurposing in Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches in general and specific to network are stated along with future recommendations for better network-based models.
Collapse
|
24
|
Xu J, Meng Y, Peng L, Cai L, Tang X, Liang Y, Tian G, Yang J. Computational drug repositioning using similarity constrained weight regularization matrix factorization: A case of COVID-19. J Cell Mol Med 2022; 26:3772-3782. [PMID: 35644992 PMCID: PMC9258716 DOI: 10.1111/jcmm.17412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Amid the COVID‐19 crisis, we put sizeable efforts to collect a high number of experimentally validated drug–virus association entries from literature by text mining and built a human drug–virus association database. To the best of our knowledge, it is the largest publicly available drug–virus database so far. Next, we develop a novel weight regularization matrix factorization approach, termed WRMF, for in silico drug repurposing by integrating three networks: the known drug–virus association network, the drug–drug chemical structure similarity network, and the virus–virus genomic sequencing similarity network. Specifically, WRMF adds a weight to each training sample for reducing the influence of negative samples (i.e. the drug–virus association is unassociated). A comparison on the curated drug–virus database shows that WRMF performs better than a few state‐of‐the‐art methods. In addition, we selected the other two different public datasets (i.e. Cdataset and HMDD V2.0) to assess WRMF's performance. The case study also demonstrated the accuracy and reliability of WRMF to infer potential drugs for the novel virus. In summary, we offer a useful tool including a novel drug–virus association database and a powerful method WRMF to repurpose potential drugs for new viruses.
Collapse
Affiliation(s)
- Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Yajie Meng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lijun Cai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xianfang Tang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | | | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | | |
Collapse
|
25
|
Firoozbakht F, Rezaeian I, Rueda L, Ngom A. Computationally repurposing drugs for breast cancer subtypes using a network-based approach. BMC Bioinformatics 2022; 23:143. [PMID: 35443626 PMCID: PMC9020161 DOI: 10.1186/s12859-022-04662-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
‘De novo’ drug discovery is costly, slow, and with high risk. Repurposing known drugs for treatment of other diseases offers a fast, low-cost/risk and highly-efficient method toward development of efficacious treatments. The emergence of large-scale heterogeneous biomolecular networks, molecular, chemical and bioactivity data, and genomic and phenotypic data of pharmacological compounds is enabling the development of new area of drug repurposing called ‘in silico’ drug repurposing, i.e., computational drug repurposing (CDR). The aim of CDR is to discover new indications for an existing drug (drug-centric) or to identify effective drugs for a disease (disease-centric). Both drug-centric and disease-centric approaches have the common challenge of either assessing the similarity or connections between drugs and diseases. However, traditional CDR is fraught with many challenges due to the underlying complex pharmacology and biology of diseases, genes, and drugs, as well as the complexity of their associations. As such, capturing highly non-linear associations among drugs, genes, diseases by most existing CDR methods has been challenging. We propose a network-based integration approach that can best capture knowledge (and complex relationships) contained within and between drugs, genes and disease data. A network-based machine learning approach is applied thereafter by using the extracted knowledge and relationships in order to identify single and pair of approved or experimental drugs with potential therapeutic effects on different breast cancer subtypes. Indeed, further clinical analysis is needed to confirm the therapeutic effects of identified drugs on each breast cancer subtype.
Collapse
Affiliation(s)
- Forough Firoozbakht
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - Iman Rezaeian
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.,Rocket Innovation Studio, 156 Chatham St W, Windsor, ON, Canada
| | - Luis Rueda
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.
| | - Alioune Ngom
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
26
|
Halder D, Das S, Joseph A, Jeyaprakash RS. Molecular docking and dynamics approach to in silico drug repurposing for inflammatory bowels disease by targeting TNF alpha. J Biomol Struct Dyn 2022; 41:3462-3475. [PMID: 35285757 DOI: 10.1080/07391102.2022.2050948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is a chronic disorder of the large intestine with the prevalence of approximately 400 cases in 100000, and it is rising day by day. However, several drugs like sulfasalazine (composed of sulfapyridine and 5-aminosalicylic acid or 5-ASA), corticosteroids, and immunosuppressants manage the disease. But there are no absolute treatments for the pain and inflammation of the disease. TNFα is an important target, and drugs like infliximab and adalimumab have pharmacological potency but with pronounced toxicity. So, we choose this major target TNFα for the virtual screening of US-FDA-approved drugs for its repurposing using the in silico method. The protein TNFα (PDB ID: 2AZ5) with small molecule inhibitor and the US-FDA-approved drug molecules (from Zinc database) were first imported and prepared using Protein Preparation Wizard and LigPrep, respectively, followed by molecular docking, ADMET analysis and prime MMGBSA. After that, the drugs were shortlisted according to dock score, ADMET parameters and MM GBSA dG binding score. After that, the shortlisted drug molecules were subjected to an induced-fit docking analysis. Two of the most promising molecules, ZINC000003830957 (Iopromide) and ZINC000003830635 (Deferoxamine), were chosen for molecular dynamics simulation. Finally, the bioisosteric replacement was used to improve the ADMET properties of these molecules. This research provides an idea for drug exploration and computational tools for drug discovery in treating inflammatory bowel disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
Wang F, Ding Y, Lei X, Liao B, Wu FX. Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:953-965. [PMID: 32845842 DOI: 10.1109/tcbb.2020.3019781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Drug repositioning is an important approach for drug discovery. Computational drug repositioning approaches typically use a gene signature to represent a particular disease and connect the gene signature with drug perturbation profiles. Although disease samples, especially from cancer, may be heterogeneous, most existing methods consider them as a homogeneous set to identify differentially expressed genes (DEGs)for further determining a gene signature. As a result, some genes that should be in a gene signature may be averaged off. In this study, we propose a new framework to identify gene signatures for cancer drug repositioning based on sample clustering (GS4CDRSC). GS4CDRSC first groups samples into several clusters based on their gene expression profiles. Second, an existing method is applied to the samples in each cluster for generating a list of DEGs. Then a weighting approach is used to identify an intergrated gene signature from all the lists of DEGs. The integrated gene signature is used to connect with drug perturbation profiles in the Connectivity Map (CMap)database to generate a list of drug candidates. GS4CDRSC has been tested with several cancer datasets and existing methods. The computational results show that GS4CDRSC outperforms those methods without the sample clustering and weighting approaches in terms of both number and rate of predicted known drugs for specific cancers.
Collapse
|
28
|
Shao M, Jiang L, Meng Z, Xu J. Computational Drug Repurposing Based on a Recommendation System and Drug-Drug Functional Pathway Similarity. Molecules 2022; 27:1404. [PMID: 35209193 PMCID: PMC8878172 DOI: 10.3390/molecules27041404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Drug repurposing identifies new clinical indications for existing drugs. It can be used to overcome common problems associated with cancers, such as heterogeneity and resistance to established therapies, by rapidly adapting known drugs for new treatment. In this study, we utilized a recommendation system learning model to prioritize candidate cancer drugs. We designed a drug-drug pathway functional similarity by integrating multiple genetic and epigenetic alterations such as gene expression, copy number variation (CNV), and DNA methylation. When compared with other similarities, such as SMILES chemical structures and drug targets based on the protein-protein interaction network, our approach provided better interpretable models capturing drug response mechanisms. Furthermore, our approach can achieve comparable accuracy when evaluated with other learning models based on large public datasets (CCLE and GDSC). A case study about the Erlotinib and OSI-906 (Linsitinib) indicated that they have a synergistic effect to reduce the growth rate of tumors, which is an alternative targeted therapy option for patients. Taken together, our computational method characterized drug response from the viewpoint of a multi-omics pathway and systematically predicted candidate cancer drugs with similar therapeutic effects.
Collapse
Affiliation(s)
- Mengting Shao
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
- Department of Computer Science, College of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410005, China
| | - Leiming Jiang
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
| | - Zhigang Meng
- Department of Computer Science, College of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410005, China
| | - Jianzhen Xu
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
| |
Collapse
|
29
|
Domingo-Fernández D, Gadiya Y, Patel A, Mubeen S, Rivas-Barragan D, Diana CW, Misra BB, Healey D, Rokicki J, Colluru V. Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery. PLoS Comput Biol 2022; 18:e1009909. [PMID: 35213534 PMCID: PMC8906585 DOI: 10.1371/journal.pcbi.1009909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Network-based approaches are becoming increasingly popular for drug discovery as they provide a systems-level overview of the mechanisms underlying disease pathophysiology. They have demonstrated significant early promise over other methods of biological data representation, such as in target discovery, side effect prediction and drug repurposing. In parallel, an explosion of -omics data for the deep characterization of biological systems routinely uncovers molecular signatures of disease for similar applications. Here, we present RPath, a novel algorithm that prioritizes drugs for a given disease by reasoning over causal paths in a knowledge graph (KG), guided by both drug-perturbed as well as disease-specific transcriptomic signatures. First, our approach identifies the causal paths that connect a drug to a particular disease. Next, it reasons over these paths to identify those that correlate with the transcriptional signatures observed in a drug-perturbation experiment, and anti-correlate to signatures observed in the disease of interest. The paths which match this signature profile are then proposed to represent the mechanism of action of the drug. We demonstrate how RPath consistently prioritizes clinically investigated drug-disease pairs on multiple datasets and KGs, achieving better performance over other similar methodologies. Furthermore, we present two case studies showing how one can deconvolute the predictions made by RPath as well as predict novel targets.
Collapse
Affiliation(s)
| | - Yojana Gadiya
- Enveda Biosciences, Boulder, Colorado, United States of America
| | - Abhishek Patel
- Enveda Biosciences, Boulder, Colorado, United States of America
| | - Sarah Mubeen
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Chris W. Diana
- Enveda Biosciences, Boulder, Colorado, United States of America
| | | | - David Healey
- Enveda Biosciences, Boulder, Colorado, United States of America
| | - Joe Rokicki
- Enveda Biosciences, Boulder, Colorado, United States of America
| | - Viswa Colluru
- Enveda Biosciences, Boulder, Colorado, United States of America
| |
Collapse
|
30
|
Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022; 27:49-64. [PMID: 34400352 PMCID: PMC10014214 DOI: 10.1016/j.drudis.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Drug-repurposing technologies are growing in number and maturing. However, comparisons to each other and to reality are hindered because of a lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross-platform comparability, enabling us to continue to strive toward optimal repurposing by decreasing the time and cost of drug discovery and development.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
31
|
System and network biology-based computational approaches for drug repositioning. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300680 DOI: 10.1016/b978-0-323-91172-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in computational biology have not only fastened the drug discovery process but have also proven to be a powerful tool for the search of existing molecules of therapeutic value for drug repurposing. The system biology-based drug repurposing approaches shorten the time and reduced the cost of the whole process when compared to de novo drug discovery. In the present pandemic situation, these computational approaches have emerged as a boon to tackle the COVID-19 associated morbidities and mortalities. In this chapter, we present the overview of system biology-based network system approaches which can be exploited for the drug repurposing of disease. Besides, we have included information on relevant repurposed drugs which are currently used for the treatment of COVID-19.
Collapse
|
32
|
Molecular docking and molecular dynamic simulation approaches for drug development and repurposing of drugs for severe acute respiratory syndrome-Coronavirus-2. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300476 DOI: 10.1016/b978-0-323-91172-6.00007-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Al-Taie Z, Hannink M, Mitchem J, Papageorgiou C, Shyu CR. Drug Repositioning and Subgroup Discovery for Precision Medicine Implementation in Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:6278. [PMID: 34944904 PMCID: PMC8699385 DOI: 10.3390/cancers13246278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death among female patients with cancer. Patients with triple-negative breast cancer (TNBC) have the lowest survival rate. TNBC has substantial heterogeneity within the BC population. This study utilized our novel patient stratification and drug repositioning method to find subgroups of BC patients that share common genetic profiles and that may respond similarly to the recommended drugs. After further examination of the discovered patient subgroups, we identified five homogeneous druggable TNBC subgroups. A drug repositioning algorithm was then applied to find the drugs with a high potential for each subgroup. Most of the top drugs for these subgroups were chemotherapy used for various types of cancer, including BC. After analyzing the biological mechanisms targeted by these drugs, ferroptosis was the common cell death mechanism induced by the top drugs in the subgroups with neoplasm subdivision and race as clinical variables. In contrast, the antioxidative effect on cancer cells was the common targeted mechanism in the subgroup of patients with an age less than 50. Literature reviews were used to validate our findings, which could provide invaluable insights to streamline the drug repositioning process and could be further studied in a wet lab setting and in clinical trials.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad 10070, Iraq
| | - Mark Hannink
- Department of Biochemistry, University of Missouri, Columbia, Missouri, MO 65211, USA;
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Jonathan Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
34
|
Pantziarka P, Vandeborne L, Bouche G. A Database of Drug Repurposing Clinical Trials in Oncology. Front Pharmacol 2021; 12:790952. [PMID: 34867425 PMCID: PMC8635986 DOI: 10.3389/fphar.2021.790952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pan Pantziarka
- The Anticancer Fund, Brussels, Belgium.,The George Pantziarka TP53 Trust, London, United Kingdom
| | | | | |
Collapse
|
35
|
Overhoff B, Falls Z, Mangione W, Samudrala R. A Deep-Learning Proteomic-Scale Approach for Drug Design. Pharmaceuticals (Basel) 2021; 14:1277. [PMID: 34959678 PMCID: PMC8709297 DOI: 10.3390/ph14121277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Computational approaches have accelerated novel therapeutic discovery in recent decades. The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multitarget therapeutic discovery, repurposing, and design aims to improve their efficacy and safety by employing a holistic approach that computes interaction signatures between every drug/compound and a large library of non-redundant protein structures corresponding to the human proteome fold space. These signatures are compared and analyzed to determine if a given drug/compound is efficacious and safe for a given indication/disease. In this study, we used a deep learning-based autoencoder to first reduce the dimensionality of CANDO-computed drug-proteome interaction signatures. We then employed a reduced conditional variational autoencoder to generate novel drug-like compounds when given a target encoded "objective" signature. Using this approach, we designed compounds to recreate the interaction signatures for twenty approved and experimental drugs and showed that 16/20 designed compounds were predicted to be significantly (p-value ≤ 0.05) more behaviorally similar relative to all corresponding controls, and 20/20 were predicted to be more behaviorally similar relative to a random control. We further observed that redesigns of objectives developed via rational drug design performed significantly better than those derived from natural sources (p-value ≤ 0.05), suggesting that the model learned an abstraction of rational drug design. We also show that the designed compounds are structurally diverse and synthetically feasible when compared to their respective objective drugs despite consistently high predicted behavioral similarity. Finally, we generated new designs that enhanced thirteen drugs/compounds associated with non-small cell lung cancer and anti-aging properties using their predicted proteomic interaction signatures. his study represents a significant step forward in automating holistic therapeutic design with machine learning, enabling the rapid generation of novel, effective, and safe drug leads for any indication.
Collapse
Affiliation(s)
| | | | | | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (B.O.); (Z.F.); (W.M.)
| |
Collapse
|
36
|
Ravanmehr V, Blau H, Cappelletti L, Fontana T, Carmody L, Coleman B, George J, Reese J, Joachimiak M, Bocci G, Hansen P, Bult C, Rueter J, Casiraghi E, Valentini G, Mungall C, Oprea TI, Robinson PN. Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer. NAR Genom Bioinform 2021; 3:lqab113. [PMID: 34888523 PMCID: PMC8652379 DOI: 10.1093/nargab/lqab113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibiting protein kinases (PKs) that cause cancers has been an important topic in cancer therapy for years. So far, almost 8% of >530 PKs have been targeted by FDA-approved medications, and around 150 protein kinase inhibitors (PKIs) have been tested in clinical trials. We present an approach based on natural language processing and machine learning to investigate the relations between PKs and cancers, predicting PKs whose inhibition would be efficacious to treat a certain cancer. Our approach represents PKs and cancers as semantically meaningful 100-dimensional vectors based on word and concept neighborhoods in PubMed abstracts. We use information about phase I-IV trials in ClinicalTrials.gov to construct a training set for random forest classification. Our results with historical data show that associations between PKs and specific cancers can be predicted years in advance with good accuracy. Our tool can be used to predict the relevance of inhibiting PKs for specific cancers and to support the design of well-focused clinical trials to discover novel PKIs for cancer therapy.
Collapse
Affiliation(s)
- Vida Ravanmehr
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Luca Cappelletti
- AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy
| | - Tommaso Fontana
- AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy
| | - Leigh Carmody
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ben Coleman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- University of Connecticut Health Center, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Justin Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Marcin Joachimiak
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Giovanni Bocci
- Department of Internal Medicine and UNM Comprehensive Cancer Center, UNM School of, Medicine, Albuquerque, NM 87102, USA
| | - Peter Hansen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Carol Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Jens Rueter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04609, USA
| | - Elena Casiraghi
- AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy
| | - Giorgio Valentini
- AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy
| | - Christopher Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Tudor I Oprea
- Department of Internal Medicine and UNM Comprehensive Cancer Center, UNM School of, Medicine, Albuquerque, NM 87102, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| |
Collapse
|
37
|
Hu P, Huang YA, Mei J, Leung H, Chen ZH, Kuang ZM, You ZH, Hu L. Learning from low-rank multimodal representations for predicting disease-drug associations. BMC Med Inform Decis Mak 2021; 21:308. [PMID: 34736437 PMCID: PMC8567544 DOI: 10.1186/s12911-021-01648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background Disease-drug associations provide essential information for drug discovery and disease treatment. Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-consuming and expensive. To better understand and explore these valuable associations, it would be useful to develop computational methods for predicting unobserved disease-drug associations. With the advent of various datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correlation between disease and drugs.
Results In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the association score of each pair of diseases and drugs in the database. This method achieves good performance on Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational models. Conclusions The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse multiple similar networks and combine matrix complement technology to predict potential association. We have demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for drug repositioning.
Collapse
Affiliation(s)
- Pengwei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Yu-An Huang
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Henry Leung
- Electrical and Computer Engineering, University of Calgary, Calgary, Canada
| | - Zhan-Heng Chen
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Ze-Min Kuang
- Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| |
Collapse
|
38
|
Golriz Khatami S, Mubeen S, Bharadhwaj VS, Kodamullil AT, Hofmann-Apitius M, Domingo-Fernández D. Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures. NPJ Syst Biol Appl 2021; 7:40. [PMID: 34707117 PMCID: PMC8551267 DOI: 10.1038/s41540-021-00199-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-the-art methods. We also show how this approach can deconvolute a drugs' mechanism of action and propose combination therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by simulating a drugs' effect on a given patient.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany.
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany.
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
| | - Vinay Srinivas Bharadhwaj
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany.
- Fraunhofer Center for Machine Learning, Sankt Augustin, Germany.
- Enveda Biosciences, Boulder, CO, 80301, USA.
| |
Collapse
|
39
|
Raj D, Agrawal P, Gaitsch H, Wicks E, Tyler B. Pharmacological strategies for improving the prognosis of glioblastoma. Expert Opin Pharmacother 2021; 22:2019-2031. [PMID: 34605345 PMCID: PMC8603465 DOI: 10.1080/14656566.2021.1948013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Treatments for brain cancer have radically evolved in the past decade due to a better understanding of the interplay between the immune system and tumors of the central nervous system (CNS). However, glioblastoma multiforme (GBM) remains the most common and lethal CNS malignancy affecting adults.Areas covered: The authors review the literature on glioblastoma pharmacologic therapies with a focus on trials of combination chemo-/immunotherapies and drug delivery platforms from 2015 to 2021.Expert opinion: Few therapeutic advances in GBM treatment have been made since the Food and Drug Administration (FDA) approval of the BCNU-eluting wafer, Gliadel, in 1996 and oral temozolomide (TMZ) in 2005. Recent advances in our understanding of GBM have promoted a wide assortment of new therapeutic approaches including combination therapy, immunotherapy, vaccines, and Car T-cell therapy along with developments in drug delivery. Given promising preclinical data, these novel pharmacotherapies for the treatment of GBM are currently being evaluated in various stages of clinical trials.
Collapse
Affiliation(s)
- Divyaansh Raj
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pranjal Agrawal
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
40
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
41
|
Figueiredo RQ, Raschka T, Kodamullil AT, Hofmann-Apitius M, Mubeen S, Domingo-Fernández D. Towards a global investigation of transcriptomic signatures through co-expression networks and pathway knowledge for the identification of disease mechanisms. Nucleic Acids Res 2021; 49:7939-7953. [PMID: 34197603 PMCID: PMC8373148 DOI: 10.1093/nar/gkab556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
We attempt to address a key question in the joint analysis of transcriptomic data: can we correlate the patterns we observe in transcriptomic datasets to known interactions and pathway knowledge to broaden our understanding of disease pathophysiology? We present a systematic approach that sheds light on the patterns observed in hundreds of transcriptomic datasets from over sixty indications by using pathways and molecular interactions as a template. Our analysis employs transcriptomic datasets to construct dozens of disease specific co-expression networks, alongside a human protein-protein interactome network. Leveraging the interoperability between these two network templates, we explore patterns both common and particular to these diseases on three different levels. Firstly, at the node-level, we identify most and least common proteins across diseases and evaluate their consistency against the interactome as a proxy for their prevalence in the scientific literature. Secondly, we overlay both network templates to analyze common correlations and interactions across diseases at the edge-level. Thirdly, we explore the similarity between patterns observed at the disease-level and pathway knowledge to identify signatures associated with specific diseases and indication areas. Finally, we present a case scenario in schizophrenia, where we show how our approach can be used to investigate disease pathophysiology.
Collapse
Affiliation(s)
- Rebeca Queiroz Figueiredo
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany.,Fraunhofer Center for Machine Learning, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala, India
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany.,Fraunhofer Center for Machine Learning, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany.,Fraunhofer Center for Machine Learning, Germany.,Enveda Biosciences, Boulder, CO 80301, USA
| |
Collapse
|
42
|
Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin Drug Discov 2021; 16:991-1007. [PMID: 34075855 DOI: 10.1080/17460441.2021.1918096] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Precision medicine is the concept of treating diseases based on environmental factors, lifestyles, and molecular profiles of patients. This approach has been found to increase success rates of clinical trials and accelerate drug approvals. However, current precision medicine applications in early drug discovery use only a handful of molecular biomarkers to make decisions, whilst clinics gear up to capture the full molecular landscape of patients in the near future. This deep multi-omics characterization demands new analysis strategies to identify appropriate treatment regimens, which we envision will be pioneered by artificial intelligence.Areas covered: In this review, the authors discuss the current state of drug discovery in precision medicine and present our vision of how artificial intelligence will impact biomarker discovery and drug design.Expert opinion: Precision medicine is expected to revolutionize modern medicine; however, its traditional form is focusing on a few biomarkers, thus not equipped to leverage the full power of molecular landscapes. For learning how the development of drugs can be tailored to the heterogeneity of patients across their molecular profiles, artificial intelligence algorithms are the next frontier in precision medicine and will enable a fully personalized approach in drug design, and thus ultimately impacting clinical practice.
Collapse
Affiliation(s)
- Fabio Boniolo
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Emilio Dorigatti
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Statistical Learning and Data Science, Department of Statistics, Ludwig Maximilian Universität München, Munich, Germany
| | - Alexander J Ohnmacht
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Dieter Saur
- School of Medicine, Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany.,Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany.,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
43
|
Rai S, Bhatia V, Bhatnagar S. Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach. Comput Biol Chem 2021; 92:107505. [PMID: 34030115 DOI: 10.1016/j.compbiolchem.2021.107505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia causes diseases like cardiovascular disease, cancer, Type II Diabetes and Alzheimer's disease. Drugs that specifically target HL associated diseases are required for treatment. 34 KEGG pathways targeted by lipid lowering drugs were used to construct a directed protein-protein interaction network and driver nodes were determined using CytoCtrlAnalyser plugin of Cytoscape 3.6. The involvement of driver nodes of HL in other diseases was verified using GWAS. The central nodes of the network and 34 overrepresented pathways had a critical role in Hyperlipidemia. The PI3K-AKT signalling pathway, non-essentiality, non-centrality and approved drug target status were the predominant features of the driver nodes. Next, a Random Forest classifier was trained on 1445 molecular descriptors calculated using PaDEL for 50 approved lipid lowering and 84 lipid raising drugs as the positive and negative training set respectively. The classifier showed average accuracy of 76.8 % during 5-fold cross validation with AUC of 0.79 ± 0.06 for the ROC curve. The classifier was applied to select molecules with favourable properties for lipid lowering from the 130 approved drugs interacting with the identified driver nodes. We have integrated diverse network data and machine learning to predict repurposing of nine drugs for treatment of HL associated diseases.
Collapse
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology Dwarka, New Delhi 110078, India.
| |
Collapse
|
44
|
Gene Expression as a Guide to the Development of Novel Therapies in Primary Glomerular Diseases. J Clin Med 2021; 10:jcm10112262. [PMID: 34073694 PMCID: PMC8197155 DOI: 10.3390/jcm10112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite improvements in understanding the pathogenic mechanisms of primary glomerular diseases, therapy still remains nonspecific. We sought to identify novel therapies targeting kidney-intrinsic injury of distinct primary glomerulonephritides through computational systems biology approaches. We defined the unique transcriptional landscape within kidneys from patients with focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN) and thin basement membrane nephropathy (TBMN). Differentially expressed genes were functionally annotated with enrichment analysis, and distinct biological processes and pathways implicated in each primary glomerular disease were uncovered. Finally, we identified novel drugs and small-molecule compounds that may reverse each glomerulonephritis phenotype, suggesting they should be further tested as precise therapy in primary glomerular diseases.
Collapse
|
45
|
Falvo P, Orecchioni S, Roma S, Raveane A, Bertolini F. Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens. Curr Med Chem 2021; 28:2114-2136. [PMID: 33109033 DOI: 10.2174/0929867327999200817104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.
Collapse
Affiliation(s)
- Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Roma
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
46
|
Hodos RA, Strub MD, Ramachandran S, Meleshkevitch EA, Boudko DY, Bridges RJ, Dudley JT, McCray PB. Integrative chemogenomic analysis identifies small molecules that partially rescue ΔF508-CFTR for cystic fibrosis. CPT Pharmacometrics Syst Pharmacol 2021; 10:500-510. [PMID: 33934548 PMCID: PMC8129714 DOI: 10.1002/psp4.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Rare diseases affect 10% of the first-world population, yet over 95% lack even a single pharmaceutical treatment. In the present age of information, we need ways to leverage our vast data and knowledge to streamline therapeutic development and lessen this gap. Here, we develop and implement an innovative informatic approach to identify therapeutic molecules, using the Connectivity Map and LINCS L1000 databases and disease-associated transcriptional signatures and pathways. We apply this to cystic fibrosis (CF), the most common genetic disease in people of northern European ancestry leading to chronic lung disease and reduced lifespan. We selected and tested 120 small molecules in a CF cell line, finding 8 with activity, and confirmed 3 in primary CF airway epithelia. Although chemically diverse, the transcriptional profiles of the hits suggest a common mechanism associated with the unfolded protein response and/or TNFα signaling. This study highlights the power of informatics to help identify new therapies and reveal mechanistic insights while moving beyond target-centric drug discovery.
Collapse
Affiliation(s)
- Rachel A. Hodos
- Institute for Next Generation HealthcareMount Sinai School of MedicineNew YorkNYUSA
- Courant Institute for Mathematical SciencesNew York UniversityNew YorkNYUSA
- Present address:
BenevolentAINew YorkNYUSA
| | - Matthew D. Strub
- Department of PediatricsUniversity of IowaCarver College of MedicineIowa CityIAUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIAUSA
| | | | - Ella A. Meleshkevitch
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Dmitri Y. Boudko
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Joel T. Dudley
- Institute for Next Generation HealthcareMount Sinai School of MedicineNew YorkNYUSA
| | - Paul B. McCray
- Department of PediatricsUniversity of IowaCarver College of MedicineIowa CityIAUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIAUSA
| |
Collapse
|
47
|
Cui C, Ding X, Wang D, Chen L, Xiao F, Xu T, Zheng M, Luo X, Jiang H, Chen K. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network. Bioinformatics 2021; 37:2930-2937. [PMID: 33739367 PMCID: PMC8479657 DOI: 10.1093/bioinformatics/btab191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Breast cancer is one of the leading causes of cancer deaths among women worldwide. It is necessary to develop new breast cancer drugs because of the shortcomings of existing therapies. The traditional discovery process is time-consuming and expensive. Repositioning of clinically approved drugs has emerged as a novel approach for breast cancer therapy. However, serendipitous or experiential repurposing cannot be used as a routine method. RESULTS In this study, we proposed a graph neural network model GraphRepur based on GraphSAGE for drug repurposing against breast cancer. GraphRepur integrated two major classes of computational methods, drug network-based and drug signature-based. The differentially expressed genes of disease, drug-exposure gene expression data and the drug-drug links information were collected. By extracting the drug signatures and topological structure information contained in the drug relationships, GraphRepur can predict new drugs for breast cancer, outperforming previous state-of-the-art approaches and some classic machine learning methods. The high-ranked drugs have indeed been reported as new uses for breast cancer treatment recently. AVAILABILITYAND IMPLEMENTATION The source code of our model and datasets are available at: https://github.com/cckamy/GraphRepur and https://figshare.com/articles/software/GraphRepur_Breast_Cancer_Drug_Repurposing/14220050. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chen Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Xiao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- To whom correspondence should be addressed. or
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- To whom correspondence should be addressed. or
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
48
|
Sahoo BM, Ravi Kumar BVV, Sruti J, Mahapatra MK, Banik BK, Borah P. Drug Repurposing Strategy (DRS): Emerging Approach to Identify Potential Therapeutics for Treatment of Novel Coronavirus Infection. Front Mol Biosci 2021; 8:628144. [PMID: 33718434 PMCID: PMC7953054 DOI: 10.3389/fmolb.2021.628144] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Drug repurposing is also termed as drug repositioning or therapeutic switching. This method is applied to identify the novel therapeutic agents from the existing FDA approved clinically used drug molecules. It is considered as an efficient approach to develop drug candidates with new pharmacological activities or therapeutic properties. As the drug discovery is a costly, time-consuming, laborious, and highly risk process, the novel approach of drug repositioning is employed to increases the success rate of drug development. This strategy is more advantageous over traditional drug discovery process in terms of reducing duration of drug development, low-cost, highly efficient and minimum risk of failure. In addition to this, World health organization declared Coronavirus disease (COVID-19) as pandemic globally on February 11, 2020. Currently, there is an urgent need to develop suitable therapeutic agents for the prevention of the outbreak of COVID-19. So, various investigations were carried out to design novel drug molecules by utilizing different approaches of drug repurposing to identify drug substances for treatment of COVID-19, which can act as significant inhibitors against viral proteins. It has been reported that COVID-19 can infect human respiratory system by entering into the alveoli of lung via respiratory tract. So, the infection occurs due to specific interaction or binding of spike protein with angiotensin converting enzyme-2 (ACE-2) receptor. Hence, drug repurposing strategy is utilized to identify suitable drugs by virtual screening of drug libraries. This approach helps to determine the binding interaction of drug candidates with target protein of coronavirus by using computational tools such as molecular similarity and homology modeling etc. For predicting the drug-receptor interactions and binding affinity, molecular docking study and binding free energy calculations are also performed. The methodologies involved in drug repurposing can be categorized into three groups such as drug-oriented, target-oriented and disease or therapy-oriented depending on the information available related to quality and quantity of the physico-chemical, biological, pharmacological, toxicological and pharmacokinetic property of drug molecules. This review focuses on drug repurposing strategy applied for existing drugs including Remdesivir, Favipiravir, Ribavirin, Baraticinib, Tocilizumab, Chloroquine, Hydroxychloroquine, Prulifloxacin, Carfilzomib, Bictegravir, Nelfinavir, Tegobuvir and Glucocorticoids etc to determine their effectiveness toward the treatment of COVID-19.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur, India
| | - B. V. V. Ravi Kumar
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur, India
| | - J. Sruti
- Roland Institute of Pharmaceutical Sciences (Biju Patnaik University of Technology Nodal Centre of Research), Berhampur, India
| | | | - Bimal K. Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | | |
Collapse
|
49
|
Jayatilake SMDAC, Ganegoda GU. Involvement of Machine Learning Tools in Healthcare Decision Making. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6679512. [PMID: 33575021 PMCID: PMC7857908 DOI: 10.1155/2021/6679512] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
In the present day, there are many diseases which need to be identified at their early stages to start relevant treatments. If not, they could be uncurable and deadly. Due to this reason, there is a need of analysing complex medical data, medical reports, and medical images at a lesser time but with greater accuracy. There are even some instances where certain abnormalities cannot be directly recognized by humans. In healthcare for computational decision making, machine learning approaches are being used in these types of situations where a crucial data analysis needs to be performed on medical data to reveal hidden relationships or abnormalities which are not visible to humans. Implementing algorithms to perform such tasks itself is difficult, but what makes it even more challenging is to increase the accuracy of the algorithm while decreasing the required time for the algorithm to execute. In the early days, processing of large amount of medical data was an important task which resulted in machine learning being adapted in the biological domain. Since this happened, the biology and biomedical fields have been reaching higher levels by exploring more knowledge and identifying relationships which were never observed before. Reaching to its peak now the concern is being diverted towards treating patients not only based on the type of disease but also their genetics, which is known as precision medicine. Modifications in machine learning algorithms are being performed and tested daily to improve the performance of the algorithms in analysing and presenting more accurate information. In the healthcare field, starting from information extraction from medical documents until the prediction or diagnosis of a disease, machine learning has been involved. Medical imaging is a section that was greatly improved with the integration of machine learning algorithms to the field of computational biology. Nowadays, many disease diagnoses are being performed by medical image processing using machine learning algorithms. In addition, patient care, resource allocation, and research on treatments for various diseases are also being performed using machine learning-based computational decision making. Throughout this paper, various machine learning algorithms and approaches that are being used for decision making in the healthcare sector will be discussed along with the involvement of machine learning in healthcare applications in the current context. With the explored knowledge, it was evident that neural network-based deep learning methods have performed extremely well in the field of computational biology with the support of the high processing power of modern sophisticated computers and are being extensively applied because of their high predicting accuracy and reliability. When giving concern towards the big picture by combining the observations, it is noticeable that computational biology and biomedicine-based decision making in healthcare have now become dependent on machine learning algorithms, and thus they cannot be separated from the field of artificial intelligence.
Collapse
|
50
|
Hernández-Lemus E, Martínez-García M. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics. Front Oncol 2021; 10:605680. [PMID: 33520715 PMCID: PMC7841291 DOI: 10.3389/fonc.2020.605680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a set of complex pathologies that has been recognized as a major public health problem worldwide for decades. A myriad of therapeutic strategies is indeed available. However, the wide variability in tumor physiology, response to therapy, added to multi-drug resistance poses enormous challenges in clinical oncology. The last years have witnessed a fast-paced development of novel experimental and translational approaches to therapeutics, that supplemented with computational and theoretical advances are opening promising avenues to cope with cancer defiances. At the core of these advances, there is a strong conceptual shift from gene-centric emphasis on driver mutations in specific oncogenes and tumor suppressors-let us call that the silver bullet approach to cancer therapeutics-to a systemic, semi-mechanistic approach based on pathway perturbations and global molecular and physiological regulatory patterns-we will call this the shrapnel approach. The silver bullet approach is still the best one to follow when clonal mutations in driver genes are present in the patient, and when there are targeted therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is not the common case. The wide molecular variability in the mutational level often is reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-known hallmarks of cancer. In such cases "shrapnel gunshots" may become more effective than "silver bullets". Here, we will briefly present both approaches and will abound on the discussion on the state of the art of pathway-based therapeutic designs from a translational bioinformatics and computational oncology perspective. Further development of these approaches depends on building collaborative, multidisciplinary teams to resort to the expertise of clinical oncologists, oncological surgeons, and molecular oncologists, but also of cancer cell biologists and pharmacologists, as well as bioinformaticians, computational biologists and data scientists. These teams will be capable of engaging on a cycle of analyzing high-throughput experiments, mining databases, researching on clinical data, validating the findings, and improving clinical outcomes for the benefits of the oncological patients.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|