1
|
Xu Z, Tian Y, Hao L. Exosomal miR‑194 from adipose‑derived stem cells impedes hypertrophic scar formation through targeting TGF‑β1. Mol Med Rep 2024; 30:216. [PMID: 39329201 PMCID: PMC11465438 DOI: 10.3892/mmr.2024.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertrophic scars, which result from aberrant fibrosis and disorganized collagen synthesis by skin fibroblasts, emerge due to disrupted wound healing processes. These scars present significant psychosocial and functional challenges to affected individuals. The current treatment limitations largely arise from an incomplete understanding of the underlying mechanisms of hypertrophic scar development. Recent studies, however, have shed light on the potential of exosomal non‑coding RNAs interventions to mitigate hypertrophic scar proliferation. The present study assessed the impact of exosomes derived from adipose‑derived stem cells (ADSCs‑Exos) on hypertrophic scar formation using a rabbit ear model. It employed hematoxylin and eosin staining, Masson's trichrome staining and immunohistochemical staining techniques to track scar progression. The comprehensive analysis of the present study encompassed the differential expression of non‑coding RNAs, enrichment analyses of functional pathways, protein‑protein interaction studies and micro (mi)RNA‑mRNA interaction investigations. The results revealed a marked alteration in the expression levels of long non‑coding RNAs and miRNAs following ADSCs‑Exos treatment, with little changes observed in circular RNAs. Notably, miRNA (miR)‑194 emerged as a critical regulator within the signaling pathways that govern hypertrophic scar formation. Dual‑luciferase assays indicated a significant reduction in the promoter activity of TGF‑β1 following miR‑194 overexpression. Reverse transcription‑quantitative PCR and immunoblotting assays further validated the decrease in TGF‑β1 expression in the treated samples. In addition, the treatment resulted in diminished levels of inflammatory markers IL‑1β, TNF‑α and IL‑10. In vivo evidence strongly supported the role of miR‑194 in attenuating hypertrophic scar formation through the suppression of TGF‑β1. The present study endorsed the strategic use of ADSCs‑Exos, particularly through miR‑194 modulation, as an effective strategy for reducing scar formation and lowering pro‑inflammatory and fibrotic indicators such as TGF‑β1. Therefore, the present study advocated the targeted application of ADSCs‑Exos, with an emphasis on miR‑194 modulation, as a promising approach to managing proliferative scarring.
Collapse
Affiliation(s)
- Zhishan Xu
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yuan Tian
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Lijun Hao
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
2
|
Subramaniam R, Selvan Christyraj JRS, Selvan Christyraj JD, Venkatachalam S, Rossan Mathews MG, Venkatachalam K, Kalimuthu K, Yesudhason BV. Profiling microRNAs of earthworm, Perionyx excavatus and deciphering the expression of distinct novel miRNAs regulating epimorphosis regeneration. Gene 2024; 926:148636. [PMID: 38830517 DOI: 10.1016/j.gene.2024.148636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Earthworm, P. excavatus, is an ideal model organism for studying regeneration. Due to its prodigious regeneration capability, the amputated head part of the earthworm can regenerate completely within 22 days. MicroRNAs (miRNAs) regulate specific genes and are involved in essential biological processes, including regeneration. In this study, we conducted a comprehensive analysis of miRNA profiling of the earthworm, P. excavatus, during the process of anterior regeneration. Our investigation involved in the identification of 55 miRNAs from 30 distinct miRNA families that exhibit significant relevance to wound healing and regeneration. Notably, we have identified 50 novel miRNAs and predicted their pre-miRNA secondary structures using MIREAP. Both Known and Novel miRNAs are validated using qPCR. In addition, we employed the miRanda algorithm to predict the interactions between these miRNAs and their target mRNA transcripts. Based on the miRanda target prediction results, we identified the target genes such as Wnt, Myc, MAPK, SoxB, IHH, Hox, and Notch. These findings indicate that the potential targets of these miRNAs might play crucial roles in various functions related to wound healing, tissue restoration, and regeneration. Furthermore, the acquisition of these findings provides a unique perspective on understanding the molecular mechanisms driving epimorphosis regeneration in connection with miRNAs for the development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Ravichandran Subramaniam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Melinda Grace Rossan Mathews
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kesavamoorthy Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Tsai WA, Brosnan CA, Mitter N, Dietzgen RG. Involvement of MicroRNAs in the Hypersensitive Response of Capsicum Plants to the Capsicum Chlorosis Virus at Elevated Temperatures. Pathogens 2024; 13:745. [PMID: 39338939 PMCID: PMC11434723 DOI: 10.3390/pathogens13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored. Thus, this study aimed to investigate how high temperature (HT) influences the response of CaCV-resistant capsicum to the virus. Phenotypic analysis revealed a compromised resistance in capsicum plants grown at HT, with systemic necrotic spots appearing in 8 out of 14 CaCV-infected plants. Molecular analysis through next-generation sequencing identified 105 known and 83 novel microRNAs (miRNAs) in CaCV-resistant capsicum plants. Gene ontology revealed that phenylpropanoid and lignin metabolic processes, regulated by Can-miR408a and Can- miR397, are likely involved in elevated-temperature-mediated resistance-breaking responses. Additionally, real-time PCR validated an upregulation of Can-miR408a and Can-miR397 by CaCV infection at HT; however, only the Laccase 4 transcript, targeted by Can-miR397, showed a tendency of negative correlation with this miRNA. Overall, this study provides the first molecular insights into how elevated temperature affects CaCV resistance in capsicum plants and reveals the potential role of miRNA in temperature-sensitive tospovirus resistance.
Collapse
Affiliation(s)
- Wei-An Tsai
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | - Ralf G. Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
5
|
Kaya Y, Korulu S, Tunoglu ENY, Yildiz A. A potential posttranscriptional regulator for p60-katanin: miR-124-3p. Cytoskeleton (Hoboken) 2023; 80:437-447. [PMID: 37439368 DOI: 10.1002/cm.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons. Therefore, it is extremely important in neuronal branching. p60 and p80 katanin subunits coexist in the cell. While p60-katanin is responsible for cutting microtubules with its ATPase function, p80-katanin is responsible for the regulation of p60-katanin and its localization in the centrosome. Although katanin has vital functions in the cell, there are no known posttranscriptional regulators of it. MicroRNAs (miRNAs) are a group of small noncoding ribonucleotides that have been found to have important roles in regulating gene expression posttranscriptionally. Despite being important in gene regulation, so far no microRNA has been experimentally associated with katanin regulation. In this study, the effects of miR-124-3p, which we detected as a result of bioinformatics analysis to have the potential to bind to the p60 katanin mRNA, were investigated. For this aim, in this study, SH-SY5Y neuroblastoma cells were transfected with pre-miR-124-3p mimics and pre-mir miRNA precursor as a negative control, and the effect of this transfection on p60-katanin expression was measured at both RNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The results of this study showed for the first time that miR-124-3p, which was predicted to bind p60-katanin mRNA by bioinformatic analysis, may regulate the expression of the KATNA1 gene. The data obtained within the scope of this study will make important contributions in order to better understand the regulation of the expression of p60-katanin which as well will have an incontrovertible impact on the understanding of the importance of cytoskeletal reorganization in both mitotic and postmitotic cells.
Collapse
Affiliation(s)
- Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Sirin Korulu
- Institute of Natural and Health Sciences, Tallinn University, Tallinn, Estonia
| | | | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
6
|
Wu C, Rakhshandehroo T, Wettersten HI, Campos A, von Schalscha T, Jain S, Yu Z, Tan J, Mose E, Childers BG, Lowy AM, Weis SM, Cheresh DA. Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ECM-enriched niche and support tumour initiation. Nat Cell Biol 2023; 25:309-322. [PMID: 36646789 PMCID: PMC10280815 DOI: 10.1038/s41556-022-01055-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
Defining drivers of tumour initiation can provide opportunities to control cancer progression. Here we report that lysophosphatidic acid receptor 4 (LPAR4) becomes transiently upregulated on pancreatic cancer cells exposed to environmental stress or chemotherapy where it promotes stress tolerance, drug resistance, self-renewal and tumour initiation. Pancreatic cancer cells gain LPAR4 expression in response to stress by downregulating a tumour suppressor, miR-139-5p. Even in the absence of exogenous lysophosphatidic acid, LPAR4-expressing tumour cells display an enrichment of extracellular matrix genes that are established drivers of cancer stemness. Mechanistically, upregulation of fibronectin via an LPAR4/AKT/CREB axis is indispensable for LPAR4-induced tumour initiation and stress tolerance. Moreover, ligation of this fibronectin-containing matrix via integrins α5β1 or αVβ3 can transfer stress tolerance to LPAR4-negative cells. Therefore, stress- or drug-induced LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix, allowing cells to survive 'isolation stress' and compensate for the absence of stromal-derived factors by creating their own tumour-initiating niche.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Taha Rakhshandehroo
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Hiromi I Wettersten
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Alejandro Campos
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Tami von Schalscha
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Shashi Jain
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Ziqi Yu
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Jiali Tan
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - Evangeline Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Betzaira G Childers
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sara M Weis
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Spotting the Targets of the Apospory Controller TGS1 in Paspalum notatum. PLANTS 2022; 11:plants11151929. [PMID: 35893633 PMCID: PMC9332697 DOI: 10.3390/plants11151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.
Collapse
|
8
|
Kahroba H, Samadi N, Mostafazadeh M, Hejazi MS, Sadeghi MR, Hashemzadeh S, Eftekhar Sadat AT, Karimi A. Evaluating the presence of deregulated tumoral onco-microRNAs in serum-derived exosomes of gastric cancer patients as noninvasive diagnostic biomarkers. BIOIMPACTS : BI 2022; 12:127-138. [PMID: 35411299 PMCID: PMC8905585 DOI: 10.34172/bi.2021.22178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
![]()
Introduction: Exosomal microRNAs (miRNAs) are emerging diagnostic biomarkers for different types of cancers. We aim to detect gastric cancer (GC)-specific miRNAs in serum exosomes with diagnostic potential.
Methods: A pair of 43 tumor and tumor-adjacent tissue biopsies obtained from GC patients, also 5 mL peripheral blood (following 12h fasting) were collected from the same patients and healthy controls (HCs). QIAGEN miRCURY LNA miRNA Focus PCR Panel applied to screen differentially expressed onco-miRNAs. The candidate miRNAs with the highest fold changes proceeded for validation by qRT-PCR in individuals.
Results: We identified that exosomal miR-10a-5p, miR-19b-3p, miR-215-5p, and miR-18a-5p were significantly upregulated in GC patient’s exosomes in contrast to HCs exosomes, Roc curve analysis indicated area under the ROC curve (AUC) of 0.801, 0.721, 0.780 and 0.736 respectively. The Roc curve analysis for the combined signature of four exosomal miRNAs indicated AUC of 0.813. Also, Spearman's correlation coefficients indicated that the miRNA expression is highly correlated between tumor and exosome.
Conclusion: Herein, we specifically identified four miRNAs in serum exosomes of GC patients for a diagnostic purpose which are directly associated with tumoral miRNA expression profile.
Collapse
Affiliation(s)
- Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Mostafazadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Saied Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahryar Hashemzadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Taher Eftekhar Sadat
- Department of General and Vascular Surgery, Imam Reza Educational Hospital, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Yang CH, Cheng YH, Yang EC, Chuang LY, Lin YD. Multiobjective optimization-driven primer design mechanism: towards user-specified parameters of PCR primer. Brief Bioinform 2022; 23:6566002. [PMID: 35397164 DOI: 10.1093/bib/bbac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Primers are critical for polymerase chain reaction (PCR) and influence PCR experimental outcomes. Designing numerous combinations of forward and reverse primers involves various primer constraints, posing a computational challenge. Most PCR primer design methods limit parameters because the available algorithms use general fitness functions. This study designed new fitness functions based on user-specified parameters and used the functions in a primer design approach based on the multiobjective particle swarm optimization (MOPSO) algorithm to address the challenge of primer design with user-specified parameters. Multicriteria evaluation was conducted simultaneously based on primer constraints. The fitness functions were evaluated using 7425 DNA sequences and compared with a predominant primer design approach based on optimization algorithms. Each DNA sequence was run 100 times to calculate the difference between the user-specified parameters and primer constraint values. The algorithms based on fitness functions with user-specified parameters outperformed the algorithms based on general fitness functions for 11 primer constraints. Moreover, MOPSO exhibited superior implementation in all experiments. Practical gel electrophoresis was conducted to verify the PCR experiments and established that MOPSO effectively designs primers based on user-specified parameters.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.,Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,School of Dentistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Huei Cheng
- Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung, 413310, Taiwan
| | - Emirlyn Cheng Yang
- Department of Biochemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Li-Yeh Chuang
- Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - Yu-Da Lin
- Department of Computer Science and Information Engineering, National Penghu University of Science and Technology, Penghu, 880011, Taiwan
| |
Collapse
|
10
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
11
|
Insight into gene regulatory networks involved in sesame (Sesamum indicum L.) drought response. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Aarthy R, Rao AKDM, Patel K, Sridevi V, Rajkumar T, Gowda H, Mani S. Alteration of miR-362-5p and miR-454-3p expression elicits diverse responses in breast cancer cell lines. Mol Biol Rep 2021; 49:821-826. [PMID: 34727290 DOI: 10.1007/s11033-021-06873-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The heterogeneity of breast tumors presents a challenge in disease management, necessitating an understanding of the molecular mechanisms driving breast tumorigenesis. Aberrant expression of microRNAs is known to promote tumor growth and progression. Our previous RNA-sequencing dataset revealed the upregulation of miR-362-5p and miR-454-3p in breast tumors. We investigated potential role of miR-362-5p and miR-454-3p in breast cancer using MDAMB231 and MCF7 cell lines. METHODS AND RESULTS The expression of miR-362-5p and miR-454-3p were altered in MCF7 and MDAMB231 using mimics and inhibitors. The effect on cell viability, cell cycle progression and migration was assessed using Alamar blue assay, flow cytometry and wound healing assay. Further, the expression of potential target genes were measured using real-time PCR. Our results indicated that an increased expression of miR-362-5p promoted cell growth and survival in MCF7, but decreased cell migration. In contrast, miR-362-5p overexpression reduced cancer cell growth, survival and migration in MDAMB231. Overexpression of miR-454-3p was oncogenic in both cell lines but suppressed migration in the aggressive cell line MDAMB231. CONCLUSION Two microRNAs, miR-362-5p and miR-454-3p, were evaluated for functional activity in breast cancer cell lines and they showed increased proliferative signals and tumorigenic properties.
Collapse
Affiliation(s)
- Raghu Aarthy
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | | | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 691001, India
| | - Velusami Sridevi
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 691001, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India.
| |
Collapse
|
13
|
Li C, Han H, Li X, Wu J, Li X, Niu H, Li W. Analysis of lncRNA, miRNA, and mRNA Expression Profiling in Type I IFN and Type II IFN Overexpressed in Porcine Alveolar Macrophages. Int J Genomics 2021; 2021:6666160. [PMID: 34222462 PMCID: PMC8225432 DOI: 10.1155/2021/6666160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Current data is scarce regarding the function of noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in the interferon- (IFN-) mediated immune response. This is a comprehensive study that analyzes the lncRNA and miRNA expression profiles of the type I IFN and type II IFN in porcine alveolar macrophages using RNA sequencing. There was a total of 152 overexpressed differentially expressed (DE) lncRNAs and 21 DE miRNAs across type I IFN and type II IFN in porcine alveolar macrophages. Subsequent lncRNA-miRNA-mRNA network construction revealed the involvement of 36 DE lncRNAs and 12 DE miRNAs. LncRNAs such as the XLOC_211306, XLOC_100516, XLOC_00695, XLOC_149196, and XLOC_014459 were expressed at a higher degree in the type I IFN group, while XLOC_222640, XLOC_047290, XLOC_147777, XLOC_162298, XLOC_220210, and XLOC_165237 were expressed at a higher degree in the type II IFN group. These lncRNAs were found to act as "sponges" for miRNAs such as miR-34a, miR-328, miR-885-3p, miR-149, miR-30c-3p, miR-30b-5p, miR-708-5p, miR-193a-5p, miR-365-5p, and miR-7. Their target genes FADS2, RPS6KA1, PIM1, and NOD1 were found to be associated with several immune-related signaling pathways including the NOD-like receptor, Jak-STAT, mTOR, and PPAR signaling pathways. These experiments provide a comprehensive profile of overexpressed noncoding RNAs in porcine alveolar macrophages, providing new insights regarding the IFN-mediated immune response.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xinfeng Li
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Khudiakov AA, Panshin DD, Fomicheva YV, Knyazeva AA, Simonova KA, Lebedev DS, Mikhaylov EN, Kostareva AA. Different Expressions of Pericardial Fluid MicroRNAs in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy and Ischemic Heart Disease Undergoing Ventricular Tachycardia Ablation. Front Cardiovasc Med 2021; 8:647812. [PMID: 33816578 PMCID: PMC8017144 DOI: 10.3389/fcvm.2021.647812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pericardial fluid is enriched with biologically active molecules of cardiovascular origin including microRNAs. Investigation of the disease-specific extracellular microRNAs could shed light on the molecular processes underlying disease development. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease characterized by life-threatening arrhythmias and progressive heart failure development. The current data about the association between microRNAs and ARVC development are limited. Methods and Results: We performed small RNA sequence analysis of microRNAs of pericardial fluid samples obtained during transcutaneous epicardial access for ventricular tachycardia (VT) ablation of six patients with definite ARVC and three post-infarction VT patients. Disease-associated microRNAs of pericardial fluid were identified. Five microRNAs (hsa-miR-1-3p, hsa-miR-21-5p, hsa-miR-122-5p, hsa-miR-206, and hsa-miR-3679-5p) were found to be differentially expressed between patients with ARVC and patients with post-infarction VT. Enrichment analysis of differentially expressed microRNAs revealed their close linkage to cardiac diseases. Conclusion: Our data extend the knowledge of pericardial fluid microRNA composition and highlight five pericardial fluid microRNAs potentially linked to ARVC pathogenesis. Further studies are required to confirm the use of pericardial fluid RNA sequencing in differential diagnosis of ARVC.
Collapse
Affiliation(s)
- Aleksandr A Khudiakov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Daniil D Panshin
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Yulia V Fomicheva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anastasia A Knyazeva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Ksenia A Simonova
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitry S Lebedev
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Bioengineering Systems, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, Russia
| | - Evgeny N Mikhaylov
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Bioengineering Systems, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, Russia
| | - Anna A Kostareva
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia.,Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Yu X, Tan W, Gao H, Miao L, Tian X. Development of a Specific Mini-Barcode From Plastome and its Application for Qualitative and Quantitative Identification of Processed Herbal Products Using DNA Metabarcoding Technique: A Case Study on Senna. Front Pharmacol 2021; 11:585687. [PMID: 33390955 PMCID: PMC7773718 DOI: 10.3389/fphar.2020.585687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Herbal products play an important role globally in the pharmaceutical and healthcare industries. However, some specific groups of herbal products are easily adulterated by confused materials on the market, which seriously reduces the products’ quality. Universal conventional DNA barcodes would function poorly since the processed herbal products generally suffer from varying degrees of DNA degradation and DNA mixing during processing or manufacturing. For quality control purposes, an accurate and effective method should be provided for species identification of these herbal products. Here, we provided a strategy of developing the specific mini-barcode using Senna as an example, and by coupling with the metabarcoding technique, it realized the qualitative and quantitative identification of processed herbal products. The plastomes of Senna obtusifolia (L.) H.S.Irwin & Barneby and Senna occidentalis (L.) Link were newly assembled, and the hypervariable coding-regions were identified by comparing their genomes. Then, the specific mini-barcodes were developed based on the identified hypervariable regions. Finally, we applied the DNA metabarcoding technique to the developed mini-barcodes. Results showed that the lengths of plastomes of S. obtusifolia and S. occidentalis were 162,426 and 159,993 bp, respectively. Four hypervariable coding-regions ycf1, rpl23, petL, and matK were identified. Two specific mini-barcodes were successfully developed from matK, and the mini-barcode of primer 647F-847R was proved to be able to qualitatively and quantitatively identify these two processed Senna seeds. Overall, our study established a valuable way to develop the specific mini-barcode, which may provide a new idea for the quality control of processed herbal products.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Tan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Kumari K, Kar A, Nayak AK, Mishra SK, Subudhi U. miRNA-mediated alteration of sulfatase modifying factor 1 expression using self-assembled branched DNA nanostructures. RSC Adv 2021; 11:10670-10680. [PMID: 35423539 PMCID: PMC8695627 DOI: 10.1039/d0ra10733f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
Sulfatase enzymes catalyze sulfate ester hydrolysis, thus deficiencies of sulfatases lead to the accumulation of biomolecules resulting in several disorders. One of the important sulfatases is estrone sulfatase that converts inactive estrone sulfate to active estradiol. Posttranslational modification of highly conserved cysteine residue leads to unique formylglycine in the active site of sulfatases being critical for its catalytic activity. The essential factor responsible for this modification of sulfatase is Sulfatase-Modifying Factor 1 (SUMF1). The role of estrone sulfatase is well evident in breast cancer progression. However, the function and regulation of SUMF1 in cancer are not studied. In the present study, for the first time, we have assessed the expression of SUMF1 in breast cancer and report the oncogenic behavior upon overexpression of SUMF1. Although increased expression or activity of SUMF1 is anticipated based on its function, the expression of SUMF1 was found to be reduced in breast cancer cells at both mRNA and protein levels. An estrogen receptor (ER) dependent expression of SUMF1 was observed and higher SUMF1 expression is associated with improved breast cancer patient survival in ER-positive cases. However, high SUMF1 expression leads to reduced median survival in ER-negative breast cancer patients. Putative binding sites for miRNAs-106b-5p, 128-3p and 148b-3p were found at 3′-UTR of SUMF1. Since self-assembled branched DNA (bDNA) structures have emerged as a highly efficient strategy for targeting multiple miRNAs simultaneously, we studied the alteration in SUMF1 expression using bDNA nanostructures with a complementary sequence to miRNAs. The findings suggest the involvement of co-regulators and repressors in miRNA-mediated SUMF1 expression in breast cancer cells and reveal the therapeutic potential of SUMF1 in endocrine-related malignancies. Reduced expression of SUMF1 was evidenced in MCF-7 cells transfected with antimiR-bDNA. Expression of miRNA-106 and 148 have positive correlation with the expression of SUMF1. miRNA-106 and 148 blocks the repressor protein controls SUMF-1 expression.![]()
Collapse
Affiliation(s)
- Kanchan Kumari
- DNA Nanotechnology & Application Laboratory
- CSIR-Institute of Minerals & Materials Technology
- Bhubaneswar
- India
- Department of Molecular Biology
| | - Avishek Kar
- DNA Nanotechnology & Application Laboratory
- CSIR-Institute of Minerals & Materials Technology
- Bhubaneswar
- India
| | - Ashok K. Nayak
- DNA Nanotechnology & Application Laboratory
- CSIR-Institute of Minerals & Materials Technology
- Bhubaneswar
- India
| | - Sandip K. Mishra
- Cancer Biology Laboratory
- Institute of Life Sciences
- Bhubaneswar
- India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory
- CSIR-Institute of Minerals & Materials Technology
- Bhubaneswar
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|
17
|
Wang G, Li M, Zhang C, Zhan N, Cheng H, Gao Y, Sun C, Deng W, Li T. Identification of microRNA-like RNAs in Cordyceps guangdongensis and their expression profile under differential developmental stages. Fungal Genet Biol 2020; 147:103505. [PMID: 33347973 DOI: 10.1016/j.fgb.2020.103505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
Cordyceps guangdongensis is a well-known fungus with high nutritional and medicinal value. The metabolite profile of C. guangdongensis is similar to that of Ophiocordyceps sinensis. In plants and animals, microRNAs play important roles in regulating gene expression at the post-transcriptional level. MicroRNA-like RNAs (milRNAs) have been documented in several macro-fungi. To comprehensively investigate the milRNAs in C. guangdongensis, three small RNA libraries from the differentially developmental stages were constructed. Twenty-six conserved milRNAs were identified, and 19 novel milRNA candidates were predicted. Among them, 20 milRNAs were differentially expressed across the developmental processes, and 12 milRNAs were verified using stem-loop quantitative real-time reverse transcription polymerase chain reaction. In addition, the potential target genes of milRNA were predicted to be involved in the development of fruiting bodies and metabolite biosynthesis. This study is the first to report the milRNAs of C. guangdongensis, and provides important insights into studies of milRNA regulation pathways in ascomycete fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Agriculture and Animal Husbandry, Tibet University, Nyingchi 860000, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ning Zhan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huijiao Cheng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
18
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
19
|
Wang K, Li H, Xu Y, Shao Q, Yi J, Wang R, Cai W, Hang X, Zhang C, Cai H, Qu W. MFEprimer-3.0: quality control for PCR primers. Nucleic Acids Res 2020; 47:W610-W613. [PMID: 31066442 PMCID: PMC6602485 DOI: 10.1093/nar/gkz351] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Quality control (QC) for lab-designed primers is crucial for the success of a polymerase chain reaction (PCR). Here, we present MFEprimer-3.0, a functional primer quality control program for checking non-specific amplicons, dimers, hairpins and other parameters. The new features of the current version include: (i) more sensitive binding site search using the updated k-mer algorithm that allows mismatches within the k-mer, except for the first base at the 3' end. The binding sites of each primer with a stable 3' end are listed in the output; (ii) new algorithms for rapidly identifying self-dimers, cross-dimers and hairpins; (iii) the command-line version, which has an added option of JSON output to enhance the versatility of MFEprimer by acting as a QC step in the 'primer design → quality control → redesign' pipeline; (iv) a function for checking whether the binding sites contain single nucleotide polymorphisms (SNPs), which will affect the consistency of binding efficiency among different samples. In summary, MFEprimer-3.0 is updated with the well-tested PCR primer QC program and it can be integrated into various PCR primer design applications as a QC module. The MFEprimer-3.0 server is freely accessible without any login requirement at: https://mfeprimer3.igenetech.com/ and https://www.mfeprimer.com/. The source code for the command-line version is available upon request.
Collapse
Affiliation(s)
- Kun Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu 610064, China.,iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Haiwei Li
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Yue Xu
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Qianzhi Shao
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Jianming Yi
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Ruichao Wang
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Wanshi Cai
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Xingyi Hang
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| | - Chenggang Zhang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Wubin Qu
- iGeneTech Bioscience Co., Ltd, Beijing 102206, China
| |
Collapse
|