1
|
Peres A, Lees WD, Rodriguez OL, Lee NY, Polak P, Hope R, Kedmi M, Collins AM, Ohlin M, Kleinstein S, Watson C, Yaari G. IGHV allele similarity clustering improves genotype inference from adaptive immune receptor repertoire sequencing data. Nucleic Acids Res 2023; 51:e86. [PMID: 37548401 PMCID: PMC10484671 DOI: 10.1093/nar/gkad603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).
Collapse
Affiliation(s)
- Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7JE, UK
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Noah Y Lee
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Ronen Hope
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Meirav Kedmi
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, 5262000, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Andrew M Collins
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mats Ohlin
- Department of Immunotechnology Lund University, Lund, 221 00, Sweden
| | - Steven H Kleinstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
2
|
Rosenberg MI, Greenstein E, Buchkovich M, Peres A, Santoni-Rugiu E, Yang L, Mikl M, Vaksman Z, Gibbs DL, Reshef D, Salovin A, Irwin MS, Naranjo A, Ulitsky I, de Alarcon PA, Matthay KK, Weigman V, Yaari G, Panzer JA, Friedman N, Maris JM. Polyclonal lymphoid expansion drives paraneoplastic autoimmunity in neuroblastoma. Cell Rep 2023; 42:112879. [PMID: 37537844 PMCID: PMC10551040 DOI: 10.1016/j.celrep.2023.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.
Collapse
Affiliation(s)
- Miriam I Rosenberg
- Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Ayelet Peres
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel; Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital and Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lei Yang
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Martin Mikl
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | - David L Gibbs
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amy Salovin
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Meredith S Irwin
- Department of Pediatrics and Division of Hematology-Oncology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Arlene Naranjo
- Department of Biostatistics, University of Florida, Children's Oncology Group Statistics & Data Center, Gainesville, FL, USA
| | - Igor Ulitsky
- Department of Immunology & Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pedro A de Alarcon
- Department of Pediatrics, Hematology/Oncology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Katherine K Matthay
- Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | - Gur Yaari
- Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel; Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Jessica A Panzer
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John M Maris
- Department of Pediatrics and Division of Oncology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ford EE, Tieri D, Rodriguez OL, Francoeur NJ, Soto J, Kos JT, Peres A, Gibson WS, Silver CA, Deikus G, Hudson E, Woolley CR, Beckmann N, Charney A, Mitchell TC, Yaari G, Sebra RP, Watson CT, Smith ML. FLAIRR-Seq: A Method for Single-Molecule Resolution of Near Full-Length Antibody H Chain Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1607-1619. [PMID: 37027017 PMCID: PMC10152037 DOI: 10.4049/jimmunol.2200825] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Collapse
Affiliation(s)
- Easton E. Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Cassandra R. Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Thomas C. Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
4
|
Pushparaj P, Nicoletto A, Sheward DJ, Das H, Castro Dopico X, Perez Vidakovics L, Hanke L, Chernyshev M, Narang S, Kim S, Fischbach J, Ekström S, McInerney G, Hällberg BM, Murrell B, Corcoran M, Karlsson Hedestam GB. Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity 2023; 56:193-206.e7. [PMID: 36574772 PMCID: PMC9742198 DOI: 10.1016/j.immuni.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Nicoletto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Ekström
- Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
5
|
Narang S, Kaduk M, Chernyshev M, Karlsson Hedestam GB, Corcoran MM. Adaptive immune receptor genotyping using the corecount program. Front Immunol 2023; 14:1125884. [PMID: 37114042 PMCID: PMC10126697 DOI: 10.3389/fimmu.2023.1125884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
We present a new Rep-Seq analysis tool called corecount, for analyzing genotypic variation in immunoglobulin (IG) and T cell receptor (TCR) genes. corecount is highly efficient at identifying V alleles, including those that are infrequently used in expressed repertoires and those that contain 3' end variation that are otherwise refractory to reliable identification during germline inference from expressed libraries. Furthermore, corecount facilitates accurate D and J gene genotyping. The output is highly reproducible and facilitates the comparison of genotypes from multiple individuals, such as those from clinical cohorts. Here, we applied corecount to the genotypic analysis of IgM libraries from 16 individuals. To demonstrate the accuracy of corecount, we Sanger sequenced all the heavy chain IG alleles (65 IGHV, 27 IGHD and 7 IGHJ) from one individual from whom we also produced two independent IgM Rep-seq datasets. Genomic analysis revealed that 5 known IGHV and 2 IGHJ sequences are truncated in current reference databases. This dataset of genomically validated alleles and IgM libraries from the same individual provides a useful resource for benchmarking other bioinformatic programs that involve V, D and J assignments and germline inference, and may facilitate the development of AIRR-Seq analysis tools that can take benefit from the availability of more comprehensive reference databases.
Collapse
|
6
|
Ford MKB, Hari A, Rodriguez O, Xu J, Lack J, Oguz C, Zhang Y, Weber S, Magliocco M, Barnett J, Xirasagar S, Samuel S, Imberti L, Bonfanti P, Biondi A, Dalgard CL, Chanock S, Rosen L, Holland S, Su H, Notarangelo L, Vishkin U, Watson CT, Sahinalp SC. ImmunoTyper-SR: A computational approach for genotyping immunoglobulin heavy chain variable genes using short-read data. Cell Syst 2022; 13:808-816.e5. [PMID: 36265467 PMCID: PMC10084889 DOI: 10.1016/j.cels.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which are critical for the structure of antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype when using standard short-read sequencing technologies. Here, we introduce ImmunoTyper-SR, an algorithmic tool for the genotyping and CNV analysis of the germline IGHV genes on Illumina whole-genome sequencing (WGS) data using a combinatorial optimization formulation that resolves ambiguous read mappings. We have validated ImmunoTyper-SR on 12 individuals, whose IGHV allele composition had been independently validated, as well as concordance between WGS replicates from nine individuals. We then applied ImmunoTyper-SR on 585 COVID patients to investigate the associations between IGHV alleles and anti-type I IFN autoantibodies, which were previously associated with COVID-19 severity.
Collapse
Affiliation(s)
| | - Ananth Hari
- National Cancer Institute, NIH, Bethesda, MD, USA; Department of Electrical Engineering, University of Maryland, College Park, MD, USA
| | - Oscar Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Junyan Xu
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Justin Lack
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Cihan Oguz
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Yu Zhang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sarah Weber
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Mary Magliocco
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jason Barnett
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sandhya Xirasagar
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Smilee Samuel
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Luisa Imberti
- Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Bonfanti
- University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Clifton L Dalgard
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Steven Holland
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Helen Su
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Luigi Notarangelo
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Uzi Vishkin
- Department of Electrical Engineering, University of Maryland, College Park, MD, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
7
|
Lin MJ, Lin YC, Chen NC, Luo AC, Lai SK, Hsu CL, Hsu JS, Chen CY, Yang WS, Chen PL. Profiling genes encoding the adaptive immune receptor repertoire with gAIRR Suite. Front Immunol 2022; 13:922513. [PMID: 36159868 PMCID: PMC9496171 DOI: 10.3389/fimmu.2022.922513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immune receptor repertoire (AIRR) is encoded by T cell receptor (TR) and immunoglobulin (IG) genes. Profiling these germline genes encoding AIRR (abbreviated as gAIRR) is important in understanding adaptive immune responses but is challenging due to the high genetic complexity. Our gAIRR Suite comprises three modules. gAIRR-seq, a probe capture-based targeted sequencing pipeline, profiles gAIRR from individual DNA samples. gAIRR-call and gAIRR-annotate call alleles from gAIRR-seq reads and annotate whole-genome assemblies, respectively. We gAIRR-seqed TRV and TRJ of seven Genome in a Bottle (GIAB) DNA samples with 100% accuracy and discovered novel alleles. We also gAIRR-seqed and gAIRR-called the TR and IG genes of a subject from both the peripheral blood mononuclear cells (PBMC) and oral mucosal cells. The calling results from these two cell types have a high concordance (99% for all known gAIRR alleles). We gAIRR-annotated 36 genomes to unearth 325 novel TRV alleles and 29 novel TRJ alleles. We could further profile the flanking sequences, including the recombination signal sequence (RSS). We validated two structural variants for HG002 and uncovered substantial differences of gAIRR genes in references GRCh37 and GRCh38. gAIRR Suite serves as a resource to sequence, analyze, and validate germline TR and IG genes to study various immune-related phenotypes.
Collapse
Affiliation(s)
- Mao-Jan Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Yu-Chun Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Allen Chilun Luo
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Sheng-Kai Lai
- Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Academia Sinica and National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Academia Sinica and National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Jackson KJL, Kos JT, Lees W, Gibson WS, Smith ML, Peres A, Yaari G, Corcoran M, Busse CE, Ohlin M, Watson CT, Collins AM. A BALB/c IGHV Reference Set, Defined by Haplotype Analysis of Long-Read VDJ-C Sequences From F1 (BALB/c x C57BL/6) Mice. Front Immunol 2022; 13:888555. [PMID: 35720344 PMCID: PMC9205180 DOI: 10.3389/fimmu.2022.888555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.
Collapse
Affiliation(s)
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Melissa Laird Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian E. Busse
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ford M, Hari A, Rodriguez O, Xu J, Lack J, Oguz C, Zhang Y, Weber S, Magglioco M, Barnett J, Xirasagar S, Samuel S, Imberti L, Bonfanti P, Biondi A, Dalgard CL, Chanock S, Rosen L, Holland S, Su H, Notarangelo L, Vishkin U, Watson C, Sahinalp SC. ImmunoTyper-SR: A Novel Computational Approach for Genotyping Immunoglobulin Heavy Chain Variable Genes using Short Read Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.31.478564. [PMID: 35132409 PMCID: PMC8820654 DOI: 10.1101/2022.01.31.478564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which, together with the joining genes (IGHJ), diversity genes (IGHD), constant genes (IGHC) and immunoglobulin light chains, code for antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype through the use of standard short read sequencing technologies. Here we introduce ImmunoTyper-SR, an algorithmic method for genotype and CNV analysis of the germline IGHV genes using Illumina whole genome sequencing (WGS) data. ImmunoTyper-SR is based on a novel combinatorial optimization formulation that aims to minimize the total edit distance between reads and their assigned IGHV alleles from a given database, with constraints on the number and distribution of reads across each called allele. We have validated ImmunoTyper-SR on 12 individuals with Illumina WGS data from the 1000 Genomes Project, whose IGHV allele composition have been studied extensively through the use of long read and targeted sequencing platforms, as well as nine individuals from the NIAID COVID Consortium who have been subjected to WGS twice. We have then applied ImmunoTyper-SR on 585 samples from the NIAID COVID Consortium to investigate associations between distinct IGHV alleles and anti-type I IFN autoantibodies which have been linked to COVID-19 severity.
Collapse
|
10
|
Omer A, Peres A, Rodriguez OL, Watson CT, Lees W, Polak P, Collins AM, Yaari G. T cell receptor beta germline variability is revealed by inference from repertoire data. Genome Med 2022; 14:2. [PMID: 34991709 PMCID: PMC8740489 DOI: 10.1186/s13073-021-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance. The chromosomal loci encoding for the variable regions of TCRs and BCRs are challenging to decipher due to repetitive elements and undocumented structural variants. METHODS To confront this challenge, AIRR-seq-based methods have recently been developed for B cells, enabling genotype and haplotype inference and discovery of undocumented alleles. However, this approach relies on complete coverage of the receptors' variable regions, whereas most T cell studies sequence a small fraction of that region. Here, we adapted a B cell pipeline for undocumented alleles, genotype, and haplotype inference for full and partial AIRR-seq TCR data sets. The pipeline also deals with gene assignment ambiguities, which is especially important in the analysis of data sets of partial sequences. RESULTS From the full and partial AIRR-seq TCR data sets, we identified 39 undocumented polymorphisms in T cell receptor Beta V (TRBV) and 31 undocumented 5 ' UTR sequences. A subset of these inferences was also observed using independent genomic approaches. We found that a single nucleotide polymorphism differentiating between the two documented T cell receptor Beta D2 (TRBD2) alleles is strongly associated with dramatic changes in the expressed repertoire. CONCLUSIONS We reveal a rich picture of germline variability and demonstrate how a single nucleotide polymorphism dramatically affects the composition of the whole repertoire. Our findings provide a basis for annotation of TCR repertoires for future basic and clinical studies.
Collapse
Affiliation(s)
- Aviv Omer
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel
- Bar Ilan institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel
- Bar Ilan institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel
- Bar Ilan institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Andrew M Collins
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.
- Bar Ilan institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
11
|
Slabodkin A, Chernigovskaya M, Mikocziova I, Akbar R, Scheffer L, Pavlović M, Bashour H, Snapkov I, Mehta BB, Weber CR, Gutierrez-Marcos J, Sollid LM, Haff IH, Sandve GK, Robert PA, Greiff V. Individualized VDJ recombination predisposes the available Ig sequence space. Genome Res 2021; 31:2209-2224. [PMID: 34815307 PMCID: PMC8647828 DOI: 10.1101/gr.275373.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.
Collapse
Affiliation(s)
- Andrei Slabodkin
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Ivana Mikocziova
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Igor Snapkov
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | | | - Ludvig M Sollid
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | | | | | - Philippe A Robert
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
12
|
Mikocziova I, Peres A, Gidoni M, Greiff V, Yaari G, Sollid LM. Germline polymorphisms and alternative splicing of human immunoglobulin light chain genes. iScience 2021; 24:103192. [PMID: 34693229 PMCID: PMC8517844 DOI: 10.1016/j.isci.2021.103192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 10/25/2022] Open
Abstract
Inference of germline polymorphisms in immunoglobulin genes from B cell receptor repertoires is complicated by somatic hypermutations, sequencing/PCR errors, and by varying length of reference alleles. The light chain inference is particularly challenging owing to large gene duplications and absence of D genes. We analyzed the light chain cDNA sequences from naïve B cell receptor repertoires from 100 individuals. We optimized light chain allele inference by tweaking parameters of the TIgGER functions, extending the germline reference sequences, and establishing mismatch frequency patterns at polymorphic positions to filter out false-positive candidates. We identified 48 previously unreported variants of light chain variable genes. We selected 14 variants for validation and successfully validated 11 by Sanger sequencing. Clustering of light chain 5'UTR, L-PART1, and L-PART2 revealed partial intron retention in 11 kappa and 9 lambda V alleles. Our results provide insight into germline variation in human light chain immunoglobulin loci.
Collapse
Affiliation(s)
- Ivana Mikocziova
- K.G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ludvig M. Sollid
- K.G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
13
|
Mikocziova I, Greiff V, Sollid LM. Immunoglobulin germline gene variation and its impact on human disease. Genes Immun 2021; 22:205-217. [PMID: 34175903 PMCID: PMC8234759 DOI: 10.1038/s41435-021-00145-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Immunoglobulins (Ig) play an important role in the immune system both when expressed as antigen receptors on the cell surface of B cells and as antibodies secreted into extracellular fluids. The advent of high-throughput sequencing methods has enabled the investigation of human Ig repertoires at unprecedented depth. This has led to the discovery of many previously unreported germline Ig alleles. Moreover, it is becoming clear that convergent and stereotypic antibody responses are common where different individuals recognise defined antigenic epitopes with the use of the same Ig V genes. Thus, germline V gene variation is increasingly being linked to the differential capacity of generating an effective immune response, which might lead to varying disease susceptibility. Here, we review recent evidence of how germline variation in Ig genes impacts the Ig repertoire and its subsequent effects on the adaptive immune response in vaccination, infection, and autoimmunity.
Collapse
Affiliation(s)
- Ivana Mikocziova
- Department of Immunology, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo, Oslo, Norway.
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
14
|
Shemesh O, Polak P, Lundin KEA, Sollid LM, Yaari G. Machine Learning Analysis of Naïve B-Cell Receptor Repertoires Stratifies Celiac Disease Patients and Controls. Front Immunol 2021; 12:627813. [PMID: 33790900 PMCID: PMC8006302 DOI: 10.3389/fimmu.2021.627813] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CeD) is a common autoimmune disorder caused by an abnormal immune response to dietary gluten proteins. The disease has high heritability. HLA is the major susceptibility factor, and the HLA effect is mediated via presentation of deamidated gluten peptides by disease-associated HLA-DQ variants to CD4+ T cells. In addition to gluten-specific CD4+ T cells the patients have antibodies to transglutaminase 2 (autoantigen) and deamidated gluten peptides. These disease-specific antibodies recognize defined epitopes and they display common usage of specific heavy and light chains across patients. Interactions between T cells and B cells are likely central in the pathogenesis, but how the repertoires of naïve T and B cells relate to the pathogenic effector cells is unexplored. To this end, we applied machine learning classification models to naïve B cell receptor (BCR) repertoires from CeD patients and healthy controls. Strikingly, we obtained a promising classification performance with an F1 score of 85%. Clusters of heavy and light chain sequences were inferred and used as features for the model, and signatures associated with the disease were then characterized. These signatures included amino acid (AA) 3-mers with distinct bio-physiochemical characteristics and enriched V and J genes. We found that CeD-associated clusters can be identified and that common motifs can be characterized from naïve BCR repertoires. The results may indicate a genetic influence by BCR encoding genes in CeD. Analysis of naïve BCRs as presented here may become an important part of assessing the risk of individuals to develop CeD. Our model demonstrates the potential of using BCR repertoires and in particular, naïve BCR repertoires, as disease susceptibility markers.
Collapse
Affiliation(s)
- Or Shemesh
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Pazit Polak
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Knut E. A. Lundin
- K.G. Jebsen Center for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshopsitalet, Oslo, Norway
| | - Ludvig M. Sollid
- K.G. Jebsen Center for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Ohlin M. Poorly Expressed Alleles of Several Human Immunoglobulin Heavy Chain Variable Genes are Common in the Human Population. Front Immunol 2021; 11:603980. [PMID: 33717051 PMCID: PMC7943739 DOI: 10.3389/fimmu.2020.603980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022] Open
Abstract
Extensive diversity has been identified in the human heavy chain immunoglobulin locus, including allelic variation, gene duplication, and insertion/deletion events. Several genes have been suggested to be deleted in many haplotypes. Such findings have commonly been based on inference of the germline repertoire from data sets covering antibody heavy chain encoding transcripts. The inference process operates under conditions that may limit identification of genes transcribed at low levels. The presence of rare transcripts that would indicate the existence of poorly expressed alleles in haplotypes that otherwise appear to have deleted these genes has been assessed in the present study. Alleles IGHV1-2*05, IGHV1-3*02, IGHV4-4*01, and IGHV7-4-1*01 were all identified as being expressed from multiple haplotypes, but only at low levels, haplotypes that by inference often appeared not to express these genes at all. These genes are thus not as commonly deleted as previously thought. An assessment of the 5' untranslated region (up to and including the TATA-box), the signal peptide-encoding part of the gene, and the 3'-heptamer suggests that the alleles have no or minimal sequence difference in these regions in comparison to highly expressed alleles. This suggest that they may be able to participate in immunoglobulin gene rearrangement, transcription and translation. However, all four poorly expressed alleles harbor unusual sequence variants within their coding region that may compromise the functionality of the encoded products, thereby limiting their incorporation into the immunoglobulin repertoire. Transcripts based on IGHV7-4-1*01 that had undergone somatic hypermutation and class switch had mutated the codon that encoded the unusual residue in framework region 3 (cysteine 92; located far from the antigen binding site). This finding further supports the poor compatibility of this unusual residue in a fully functional protein product. Indications of a linkage disequilibrium were identified as IGHV1-2*05 and IGHV4-4*01 co-localized to the same haplotypes. Furthermore, transcripts of two of the poorly expressed alleles (IGHV1-3*02 and IGHV4-4*01) mostly do not encode in-frame, functional products, suggesting that these alleles might be essentially non-functional. It is proposed that the functionality status of immunoglobulin genes should also include assessment of their ability to encode functional protein products.
Collapse
Affiliation(s)
- Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Greiff V, Yaari G, Cowell LG. Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Collins AM, Yaari G, Shepherd AJ, Lees W, Watson CT. Germline immunoglobulin genes: Disease susceptibility genes hidden in plain sight? CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:100-108. [PMID: 37008538 PMCID: PMC10062056 DOI: 10.1016/j.coisb.2020.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulin genes are rarely considered as disease susceptibility genes despite their obvious and central contributions to immune function. This appears to be a consequence of historical views on antibody repertoire formation that no longer stand, and of difficulties that until recently surrounded the documentation of the suite of antibody genes in any individual. If these important genes are to be accessible to GWAS studies, allelic variation within the human population needs to be better documented, and a curated set of genomic variations associated with antibody genes needs to be formulated. Repertoire studies arising from the COVID-19 pandemic provide an opportunity to meet these needs, and may provide insights into the profound variability that is seen in outcomes to this infection.
Collapse
|
18
|
Mikocziova I, Gidoni M, Lindeman I, Peres A, Snir O, Yaari G, Sollid LM. Polymorphisms in human immunoglobulin heavy chain variable genes and their upstream regions. Nucleic Acids Res 2020; 48:5499-5510. [PMID: 32365177 PMCID: PMC7261178 DOI: 10.1093/nar/gkaa310] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 01/13/2023] Open
Abstract
Germline variations in immunoglobulin genes influence the repertoire of B cell receptors and antibodies, and such polymorphisms may impact disease susceptibility. However, the knowledge of the genomic variation of the immunoglobulin loci is scarce. Here, we report 25 potential novel germline IGHV alleles as inferred from rearranged naïve B cell cDNA repertoires of 98 individuals. Thirteen novel alleles were selected for validation, out of which ten were successfully confirmed by targeted amplification and Sanger sequencing of non-B cell DNA. Moreover, we detected a high degree of variability upstream of the V-REGION in the 5′UTR, L-PART1 and L-PART2 sequences, and found that identical V-REGION alleles can differ in upstream sequences. Thus, we have identified a large genetic variation not only in the V-REGION but also in the upstream sequences of IGHV genes. Our findings provide a new perspective for annotating immunoglobulin repertoire sequencing data.
Collapse
Affiliation(s)
- Ivana Mikocziova
- K.G.Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ida Lindeman
- K.G.Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Omri Snir
- K.G.Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ludvig M Sollid
- K.G.Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
19
|
Ghraichy M, Galson JD, Kovaltsuk A, von Niederhäusern V, Pachlopnik Schmid J, Recher M, Jauch AJ, Miho E, Kelly DF, Deane CM, Trück J. Maturation of the Human Immunoglobulin Heavy Chain Repertoire With Age. Front Immunol 2020; 11:1734. [PMID: 32849618 PMCID: PMC7424015 DOI: 10.3389/fimmu.2020.01734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced immunoglobulin heavy chain (IgH) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream IgH constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing IgH repertoires and stress the importance of using well-selected, age-appropriate controls in IgH studies.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University of Zurich, Zurich, Switzerland.,Alchemab Therapeutics Ltd, London, United Kingdom
| | | | - Valentin von Niederhäusern
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,aiNET GmbH, Basel, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Omer A, Shemesh O, Peres A, Polak P, Shepherd AJ, Watson C, Boyd SD, Collins AM, Lees W, Yaari G. VDJbase: an adaptive immune receptor genotype and haplotype database. Nucleic Acids Res 2020; 48:D1051-D1056. [PMID: 31602484 PMCID: PMC6943044 DOI: 10.1093/nar/gkz872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
VDJbase is a publicly available database that offers easy searching of data describing the complete sets of gene sequences (genotypes and haplotypes) inferred from adaptive immune receptor repertoire sequencing datasets. VDJbase is designed to act as a resource that will allow the scientific community to explore the genetic variability of the immunoglobulin (Ig) and T cell receptor (TR) gene loci. It can also assist in the investigation of Ig- and TR-related genetic predispositions to diseases. Our database includes web-based query and online tools to assist in visualization and analysis of the genotype and haplotype data. It enables users to detect those alleles and genes that are significantly over-represented in a particular population, in terms of genotype, haplotype and gene expression. The database website can be freely accessed at https://www.vdjbase.org/, and no login is required. The data and code use creative common licenses and are freely downloadable from https://bitbucket.org/account/user/yaarilab/projects/GPHP.
Collapse
Affiliation(s)
- Aviv Omer
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Or Shemesh
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Peres
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Pazit Polak
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Corey T Watson
- University of Louisville School of Medicine, Biochemistry and Molecular Genetics, Louisville, KY 40292, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of NSW, Kensington, Sydney, NSW 2052, Australia
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|