1
|
Oberemok VV, Puzanova YV, Gal’chinsky NV. The 'genetic zipper' method offers a cost-effective solution for aphid control. FRONTIERS IN INSECT SCIENCE 2024; 4:1467221. [PMID: 39726916 PMCID: PMC11670321 DOI: 10.3389/finsc.2024.1467221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and in vitro nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid Schizolachnus pineti, causing mortality rate of 76.06 ± 7.68 on the 12th day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing Golinscide: UrRNA is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.
Collapse
Affiliation(s)
- Vol V. Oberemok
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta, Republic of Crimea
| | - Yelizaveta V. Puzanova
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| | - Nikita V. Gal’chinsky
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| |
Collapse
|
2
|
Mehrparvar M. Aphids of Iran: their host plants and distribution. Zootaxa 2024; 5516:1-129. [PMID: 39645992 DOI: 10.11646/zootaxa.5516.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 12/10/2024]
Abstract
A reviewed checklist of aphids (Hemiptera: Sternorrhyncha: Aphidomorpha) species recorded in Iran is presented as a catalogue in alphabetical order considering recent taxonomic changes. In total, 572 species along with 29 subspecies within 148 genera, belonging to 13 subfamilies, 3 families and 3 superfamilies of Aphidomorpha are presented. In addition, the list of host plants and distribution of the aphid species in Iran and the related references are provided.
Collapse
Affiliation(s)
- Mohsen Mehrparvar
- Department of Biodiversity; Institute of Science and High Technology and Environmental Science; Graduate University of Advanced Technology; Kerman; Iran.
| |
Collapse
|
3
|
V FA, Gil S R, A S, G M, Schneider MI. Evaluation of imidacloprid (Confidor OD®) genotoxicity in Chrysoperla externa eggs (Neuroptera: Chrysopidae) through comet assay. CHEMOSPHERE 2024; 356:141819. [PMID: 38575080 DOI: 10.1016/j.chemosphere.2024.141819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The comet assay allows the analysis of DNA damage caused by different genotoxins. This assay has recently gained interest because of its ease of studying the interactions of xenobiotics with different organisms. Chrysoperla externa (Hagen, 1861) is a species of great economic relevance because it is a predator of major agricultural pests during its larval stage. Neonicotinoids are the most important chemical class of insecticides introduced into markets. A previous imidacloprid toxicity assessment on C. externa showed that this neonicotinoid insecticide reduced the egg viability. The objective of this study was to analyze the genotoxicity of Confidor OD® (imidacloprid 20% a.i., LS, Bayer CropScience) on the biological control agent C. externa at DNA level using the comet assay as an ecotoxicological biomarker. A comet assay protocol has been developed for this species at first time. For the bioassays, the commercial product formulated Confidor OD® was used at two concentrations: 100 and 180 mg/l of the active ingredient. Selected eggs were dipped in a Confidor OD® solution for 15 s. Descriptors evaluated in the comet assay were damage index, % DNA damage, and tail length. The damage index did not show any significant differences between the different concentrations evaluated, but differences were observed for tail length, because at higher concentrations of Confidor OD®, there were greater DNA breaks. The DNA of the cells from treated eggs analyzed at 48 h and 96 h of development showed the same % DNA damage; that is, they had no recovery capacity. Application of Confidor OD® to C. externa eggs produced irreparable breaks at the DNA level. The technique adjusted for C. externa can be used in other beneficial insects to study pesticide genotoxicity using a comet assay.
Collapse
Affiliation(s)
- Fernández Acevedo V
- Centro de Estudios Parasitológicos y de Vectores, CONICET-UNLP CICPBA. Boulevard 120 s/n entre Av. 60 y Calle 64. La Plata (1900), Argentina.
| | - Rodriguez Gil S
- Centro de Estudios Parasitológicos y de Vectores, CONICET-UNLP CICPBA. Boulevard 120 s/n entre Av. 60 y Calle 64. La Plata (1900), Argentina
| | - Seoane A
- .Instituto de Genética Veterinaria, CONICET-UNLP. Avenida 60 y 118 S/N (1900) La Plata, Argentina
| | - Minardi G
- Centro de Estudios Parasitológicos y de Vectores, CONICET-UNLP CICPBA. Boulevard 120 s/n entre Av. 60 y Calle 64. La Plata (1900), Argentina
| | - M I Schneider
- Centro de Estudios Parasitológicos y de Vectores, CONICET-UNLP CICPBA. Boulevard 120 s/n entre Av. 60 y Calle 64. La Plata (1900), Argentina
| |
Collapse
|
4
|
Gandrabur E, Terentev A, Fedotov A, Emelyanov D, Vereshchagina A. The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period. INSECTS 2023; 14:271. [PMID: 36975956 PMCID: PMC10051124 DOI: 10.3390/insects14030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The ecological plasticity of aphid populations is determined by their clonal and morphotypic diversity. Clones will be successful when the development of their component morphotypes is optimized. The purpose of this work was to reveal the peculiarities of clonal composition and the developmental characteristics of different summer morphotypes for the rose-grass aphid, Metopolophium dirhodum (Walk.), which is an important host-alternating cereal pest and a useful model species. During the experiments, aphids were kept under ambient conditions on wheat seedlings at natural temperatures and humidity levels. An analysis of the reproduction of summer morphotypes and the resulting composition of offspring found that variation among the clones and morphotypes, as well as generational effects and an influence of sexual reproduction (and interactions between all factors) influenced the population structure of M. dirhodum. The reproduction of emigrants was less among the clones than that of the apterous or alate exules. The number of offspring produced by apterous exules differed throughout the growing season (generational effects) and between years, with different clones exhibiting different responses. There were dispersing aphids only among the offspring of apterous exules. These results can contribute to future advances in the forecasting and monitoring of aphid populations.
Collapse
Affiliation(s)
- Elena Gandrabur
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia; (A.T.)
| | - Anton Terentev
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia; (A.T.)
- Advanced Digital Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia;
| | - Alexander Fedotov
- Advanced Digital Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia;
| | - Dmitriy Emelyanov
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia; (A.T.)
- Advanced Digital Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia;
| | - Alla Vereshchagina
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia; (A.T.)
| |
Collapse
|
5
|
Generalism in nature: a community ecology perspective. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-022-00130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractLife on Earth is complex and generally abounds in food webs with other living organisms in terms of an ecological community. Besides such complexity, and the fact that populations of most living organisms have never been studied in terms of their molecular ecology, it is best to tread carefully when describing a given species as a ‘generalist’, more especially in terms of dietary and habitat breadth. We very much doubt that population homogeneity ever exists—because populations are always undergoing molecular-genetic changes, sometimes rapid, in response to various ecological challenges (e.g. climate, intra- and interspecific competition). In any case, a population may already have begun to undergo cryptic speciation. Such entities can occupy different habitats or exhibit different dietary breadths as a result of various ecological interactions formed over different spatial scales. These scales include everything from local (including islands) to geographic. The fossil evidence reveals that specialisations have existed over vast swathes of time. Besides, as is well documented, evolution only occurs as a result of adaptations leading to specialisation, and ultimately, specialist entitles, i.e. species and lower levels of ecological-evolutionary divergence. Here, focusing on diet, we posit that the terms mono-, oligo-and polyphagous are more accurate in relation to the dietary breadth of animals, with omnivory adopted in the case of organisms with very different food items. Thus, we strongly urge that the dubious and unscientific term ‘generalism’ be dropped in favour of these more precise and scientifically accurate terms directly relating to levels of phagy.
Collapse
|
6
|
Csorba AB, Fora CG, Bálint J, Felföldi T, Szabó A, Máthé I, Loxdale HD, Kentelky E, Nyárádi II, Balog A. Endosymbiotic Bacterial Diversity of Corn Leaf Aphid, Rhopalosiphum maidis Fitch (Hemiptera: Aphididae) Associated with Maize Management Systems. Microorganisms 2022; 10:microorganisms10050939. [PMID: 35630383 PMCID: PMC9145372 DOI: 10.3390/microorganisms10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, different maize fields cultivated under different management systems were sampled to test corn leaf aphid, Rhopalosiphum maidis, populations in terms of total and endosymbiotic bacterial diversity. Corn leaf aphid natural populations were collected from traditionally managed maize fields grown under high agricultural and natural landscape diversity as well as conventionally treated high-input agricultural fields grown in monoculture and with fertilizers use, hence with low natural landscape diversity. Total bacterial community assessment by DNA sequencing was performed using the Illumina MiSeq platform. In total, 365 bacterial genera were identified and 6 endosymbiont taxa. A high abundance of the primary endosymbiont Buchnera and secondary symbionts Serratia and Wolbachia were detected in all maize crops. Their frequency was found to be correlated with the maize management system used, probably with fertilizer input. Three other facultative endosymbionts (“Candidatus Hamiltonella”, an uncultured Rickettsiales genus, and Spiroplasma) were also recorded at different frequencies under the two management regimes. Principal components analyses revealed that the relative contribution of the obligate and dominant symbiont Buchnera to the aphid endosymbiotic bacterial community was 72%, whereas for the managed system this was only 16.3%. When facultative symbionts alone were considered, the effect of management system revealed a DNA diversity of 23.3%.
Collapse
Affiliation(s)
- Artúr Botond Csorba
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Ciprian George Fora
- Faculty of Horticulture and Forestry, Banat’s University of Agricultural Sciences and Veterinary Medicine King Michael I of Romania from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - János Bálint
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary;
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart 756-51 Hjelms Väg 9, 750 07 Uppsala, Sweden;
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Hugh D. Loxdale
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, UK;
| | - Endre Kentelky
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
| | - Imre-István Nyárádi
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| | - Adalbert Balog
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, 540485 Târgu Mureș, Romania; (A.B.C.); (J.B.); (E.K.)
- Correspondence: (C.G.F.); (I.-I.N.); (A.B.)
| |
Collapse
|
7
|
Li Q, Lin X, Li J, Liu B, Huang X. Differentiation in the eastern Asian Periphyllus koelreuteriae (Hemiptera: Aphididae) species complex driven by climate and host plant. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Divergent adaptation to different ecological conditions is regarded as important for speciation. For phytophagous insects, there is limited empirical evidence on species differentiation driven by climate and host plant. The recent application of molecular data and integrative taxonomic practice may improve our understanding of population divergence and speciation. Periphyllus koelreuteriae aphids feed exclusively on Koelreuteria (Sapindaceae) in temperate and subtropical regions of eastern Asia, and show morphological and phenological variations in different regions. In this study, phylogenetic and haplotype network analyses based on four genes revealed that P. koelreuteriae populations comprised three distinct genetic clades corresponding to climate and host plants, with the populations from subtropical highland regions and on Koelreuteria bipinnata host plants representing the most basal clade. These genetic lineages also showed distinct characteristics in terms of morphology and life cycle. The results indicate that P. koelreuteriae is a species complex with previously unrevealed lineages, whose differentiation may have been driven by climatic difference and host plant.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|