1
|
van Winden T, Roos C, Mol BW, Pajkrt E, Oudijk MA. A historical narrative review through the field of tocolysis in threatened preterm birth. Eur J Obstet Gynecol Reprod Biol X 2024; 22:100313. [PMID: 38736527 PMCID: PMC11087965 DOI: 10.1016/j.eurox.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Preterm birth presents a significant challenge in clinical obstetrics, requiring effective strategies to reduce associated mortality and morbidity risks. Tocolytic drugs, aimed at inhibiting uterine contractions, are a key aspect of addressing this challenge. Despite extensive research over many years, determining the most effective tocolytic agents remains a complex task, prompting better understanding of the underlying mechanisms of spontaneous preterm birth and recording meaningful outcome measures. This paper provides a comprehensive review of various obsolete and current tocolytic drug regimens that were instituted over the past century, examining both historical contexts and contemporary challenges in their development and adoption. The examination of historical debates and advancements highlights the complexity of introducing new therapies. While the search for effective tocolytics continues, questions arise regarding their actual benefits in obstetric care and the necessity for ongoing exploration. The presence of methodological limitations in current research emphasizes the importance of well-designed randomized controlled trials with robust endpoints and extended follow-up periods.In response to these complexities, the consideration of shifting towards prevention strategies aimed at addressing the root causes of preterm labor becomes more and more evident. This potential shift may offer a more effective approach than relying solely on tocolytics to delay labor initiation.Ultimately, effectively managing threatened preterm birth necessitates ongoing investigation, innovation, and a willingness to reassess strategies in pursuit of optimal outcomes for mothers, neonates, and long-term child health.
Collapse
Affiliation(s)
- Tijn van Winden
- Amsterdam UMC, location University of Amsterdam, Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of General Practice, Amsterdam Public Health Research Institute, Boelelaan 1117, Amsterdam, the Netherlands
| | - Carolien Roos
- Amsterdam UMC, location University of Amsterdam, Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - E. Pajkrt
- Amsterdam UMC, location University of Amsterdam, Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Martijn A. Oudijk
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Obstetrics and Gynecology, the Netherlands
| |
Collapse
|
2
|
Giri T, Maloney SE, Giri S, Goo YA, Song JH, Son M, Tycksen E, Conyers SB, Bice A, Ge X, Garbow JR, Quirk JD, Bauer AQ, Palanisamy A. Oxytocin-induced birth causes sex-specific behavioral and brain connectivity changes in developing rat offspring. iScience 2024; 27:108960. [PMID: 38327784 PMCID: PMC10847747 DOI: 10.1016/j.isci.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Despite six decades of the use of exogenous oxytocin for management of labor, little is known about its effects on the developing brain. Motivated by controversial reports suggesting a link between oxytocin use during labor and autism spectrum disorders (ASDs), we employed our recently validated rat model for labor induction with oxytocin to address this important concern. Using a combination of molecular biological, behavioral, and neuroimaging assays, we show that induced birth with oxytocin leads to sex-specific disruption of oxytocinergic signaling in the developing brain, decreased communicative ability of pups, reduced empathy-like behaviors especially in male offspring, and widespread sex-dependent changes in functional cortical connectivity. Contrary to our hypothesis, social behavior, typically impaired in ASDs, was largely preserved. Collectively, our foundational studies provide nuanced insights into the neurodevelopmental impact of birth induction with oxytocin and set the stage for mechanistic investigations in animal models and prospective longitudinal clinical studies.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E. Maloney
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Saswat Giri
- Graduate Student, School of Public Health and Social Justice, St. Louis University, St. Louis, MO, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Genome Technology Access Center (GTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sara B. Conyers
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Annie Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xia Ge
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel R. Garbow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam Q. Bauer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Ashraf UM, Hall DL, Campbell N, Waller JP, Rawls AZ, Solise D, Cockrell K, Bidwell GL, Romero DG, Ojeda NB, LaMarca B, Alexander BT. Inhibition of the AT 1R agonistic autoantibody in a rat model of preeclampsia improves fetal growth in late gestation. Am J Physiol Regul Integr Comp Physiol 2022; 323:R670-R681. [PMID: 36121142 PMCID: PMC9602704 DOI: 10.1152/ajpregu.00122.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kathy Cockrell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Schmidt A, Schmidt A, Markert UR. The road (not) taken - Placental transfer and interspecies differences. Placenta 2021; 115:70-77. [PMID: 34562829 DOI: 10.1016/j.placenta.2021.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.
Collapse
Affiliation(s)
- André Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
5
|
Zou R, Wang X, Li S, Chan HCS, Vogel H, Yuan S. The role of metal ions in G protein‐coupled receptor signalling and drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongfeng Zou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| | - Xueying Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Shu Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - H. C. Stephen Chan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Horst Vogel
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| |
Collapse
|