1
|
Pepin B, Rodriguez-Villamil P, Sammel L, Yin J, Dacken B. Monitoring swine virus transmission in embryos derived from commercial abattoir oocytes. Front Vet Sci 2024; 11:1336005. [PMID: 38371600 PMCID: PMC10869560 DOI: 10.3389/fvets.2024.1336005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Pigs are pivotal in agriculture and biomedical research and hold promise for xenotransplantation. Specific-pathogen-free (SPF) herds are essential for commercial swine production and xenotransplantation research facilities. Commercial herds aim to safeguard animal health, welfare, and productivity, and research facilities require SPF status to protect immunocompromised patients. Somatic cell nuclear transfer (SCNT) embryos are the norm for producing cloned and genetically edited animals. Oocytes for embryo reconstruction are most conveniently sourced from commercial abattoirs with unclear disease statuses. However, research on viral clearance from donor oocytes during embryo reconstruction remains limited. SCNT has previously been shown to reduce the transmission of Porcine reproductive and respiratory syndrome virus, Bovine viral diarrhea virus, Porcine Circovirus type 2, and Porcine parvovirus. Still, it is lacking for other pathogens, including endogenous viruses. This project contains two preliminary studies investigating the polymerase chain reaction (PCR) assay detection of common swine viruses through the phases of producing parthenogenic and SCNT embryos. Exogenous pathogens detected in oocyte donor tissue or the oocyte maturation media were not detected in the produced embryos. Porcine endogenous retrovirus type C (PERVC) was not removed by parthenogenic embryo activation and was detected in 1 of the 2 tested SCNT embryos reconstructed using a PERVC-negative cell line. SCNT and parthenogenic embryo construction similarly reduced exogenous virus detection. SCNT embryo construction helped reduce endogenous virus detection. This project demonstrates the importance of screening embryos for endogenous viruses and shows the usefulness of parthenogenic embryos in future exogenous virus clearance studies.
Collapse
Affiliation(s)
- Brent Pepin
- Cytotheryx, Inc., Rochester, MN, United States
| | | | - Lauren Sammel
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | - Jie Yin
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | | |
Collapse
|
2
|
Baldassarre H, Gutierrez K, Glanzner WG, de Macedo MP, Currin L, Guay V, Herrera MEC, Da Silva Z, Fortin F, Bordignon V. Laparoscopic ovum-pick up and in vitro embryo production in gonadotropin-stimulated gilts: Preliminary results and envisioned applications. Theriogenology 2024; 214:141-147. [PMID: 37871373 DOI: 10.1016/j.theriogenology.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The present study was conducted to establish if laparoscopic ovum pick-up (LOPU) could be adapted to the swine species, and if the developmental competence of LOPU-sourced oocytes from peripubertal gilts could be improved by gonadotropin stimulation, by comparing with oocytes sourced from slaughtered gilts lacking hormonal stimulation. Estrus was synchronized in 34 gilts of ∼6-8 months of age by daily oral administration of 17.6 mg altrenogest for 13 days and 10 mg dinoprost IM on the last day of altrenogest. Follicular development was stimulated in all gilts with a single injection of 1250 IU eCG given 3 days before LOPU (together with the 12th dose of altrenogest). In about half of the gilts (Group eCG-hCG), 500 IU hCG were injected IM ∼72 h after eCG injection, or ∼16-18 h prior to LOPU, to initiate oocyte maturation in vivo, while the remaining animals only received eCG (Group eCG). Most gilts underwent LOPU twice alternating the gonadotropin protocol, thereby decreasing the impact of individual variation on results. Abattoir-sourced oocytes from prepubertal gilts served as Control. Following LOPU, oocytes were in vitro matured, fertilized, and cultured to the blastocyst stage following standard procedures, while oocytes collected from Group eCG-hCG gilts were considered partly matured in vivo and were matured for ∼24 h instead of ∼44 h. Embryos reaching the blastocyst stage were fixed and stained to assess quality through cell numbers. There were no significant differences in the number of follicles aspirated and cumulus-oocyte complexes (COCs) recovered between Groups eCG-hCG and eCG (22.4 and 16.9 vs. 22.6 and 17.6, P > 0.05), as well as the recovery rate (76.6 vs. 78.1, P > 0.05). Cleavage rate was not different between Group eCG-hCG, Group eCG and Control (61.1 vs. 64.4 vs. 53.4 %, P > 0.05). However, the blastocyst rate over total oocytes (32.2 vs. 36.9 vs. 11.1 %, P < 0.05), blastocyst rate over cleaved oocytes (51.8 vs. 55.1 vs. 21.2 %, P < 0.01) and the average number of cells/blastocyst (89.6 vs. 87.5 vs. 62.2, P < 0.01) were unaffected by hCG treatment in LOPU-sourced oocytes, but both LOPU groups were significantly higher than abattoir-sourced oocytes, respectively. Our results suggest LOPU may become a powerful tool for sourcing swine oocytes with higher developmental competence than abattoir-sourced oocytes and known disease status for creating swine models for human biomedical applications, as well as for accelerated genetic gain in swine breeding programs.
Collapse
Affiliation(s)
- Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vanessa Guay
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Zigomar Da Silva
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Frederic Fortin
- Centre de Development du Porc du Quebec, Lévis, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
3
|
Thibier M, Perry G. IETS management of the challenges associated with embryo pathogen interaction. Reprod Fertil Dev 2023; 36:16-26. [PMID: 38064194 DOI: 10.1071/rd23144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
One of the very first challenges the International Embryo Transfer Society (IETS) addressed was concern about disease transmission via the transfer of in vivo -derived (IVD) bovine embryos. IETS commissioned its Import/Export Committee, later named Health and Safety Advisory Committee (HASAC), to resolve this matter, with the assistance of the Data Retrieval Committee following its formation in 1991. Since its first meeting in 1984, considerable achievements have been made, including meeting the numerous challenges created by the many innovations in this industry. Based on research studies and their designs, the IETS HASAC developed a system for categorising pathogens and diseases potentially susceptible to interaction with IVD embryos. This has been instrumental in defining safe operating protocols and ultimately leading to the development of the now universally accepted techniques for certification of embryo health. The close cooperation of IETS/HASAC with the World Organization of Animal Health (WOAH, formerly OIE) has facilitated the establishment of guidelines for regulators worldwide, thus ensuring the safety of international trade with embryos, while avoiding unjustified regulatory measures. In addition, IETS/HASAC produced and published the IETS Manual: A Procedural Guide and General Information for the Use of Embryo Transfer Technology Emphasising Sanitary Procedures for the embryo transfer industry (1st edition, 1987; 5th edition, 2023). This manual and its updates were designed to provide the industry world-wide with a source of information on safe and sanitary handling procedures for embryos, to describe the procedures necessary to ensure that the transfer of embryos does not result in transmission of pathogenic agents or disease, and to ensure consistent and accurate identification of embryos. The result of these 40years of IETS/HASAC involvement is that embryo transfer technology is recognised as having a comparative advantage in international movement of germplasm.
Collapse
|
4
|
Konstantinov IE, Cooper DKC, Adachi I, Bacha E, Bleiweis MS, Chinnock R, Cleveland D, Cowan PJ, Fynn-Thompson F, Morales DLS, Mohiuddin MM, Reichart B, Rothblatt M, Roy N, Turek JW, Urschel S, West L, Wolf E. Consensus statement on heart xenotransplantation in children: Toward clinical translation. J Thorac Cardiovasc Surg 2023; 166:960-967. [PMID: 36184321 PMCID: PMC10124772 DOI: 10.1016/j.jtcvs.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Igor E Konstantinov
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Mass
| | - Iki Adachi
- Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Emile Bacha
- Columbia University Medical Center, Morgan Stanley Children's Hospital, New York, NY
| | | | | | - David Cleveland
- Department of Surgery, University of Alabama, Birmingham, Ala
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | - David L S Morales
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, University of Maryland School of Medicine, Baltimore, Md
| | - Bruno Reichart
- Transregional Collaborative Research Center, Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Nathalie Roy
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Simon Urschel
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lori West
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Hansen S, Fischer K, Krabben L, Rinke Carrapeiro A, Klinger B, Schnieke A, Kaufer B, Denner J. Detection of porcine cytomegalovirus, a roseolovirus, in pig ovaries and follicular fluid: implications for somatic cells nuclear transfer, cloning and xenotransplantation. Virol J 2023; 20:15. [PMID: 36707837 PMCID: PMC9881377 DOI: 10.1186/s12985-023-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.
Collapse
Affiliation(s)
- Sabrina Hansen
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Konrad Fischer
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Ludwig Krabben
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Alexander Rinke Carrapeiro
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Bernhard Klinger
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Angelika Schnieke
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Benedikt Kaufer
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Halecker S, Hansen S, Krabben L, Ebner F, Kaufer B, Denner J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci Rep 2022; 12:21545. [PMID: 36513687 PMCID: PMC9747970 DOI: 10.1038/s41598-022-25624-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine cytomegalovirus (PCMV), that is actually a porcine roseolovirus (PRV), is a common herpesvirus in domestic pigs and wild boars. In xenotransplantation, PCMV/PRV has been shown to significantly reduce the survival time of pig kidneys and hearts in preclinical trials with different non-human primates. Furthermore, PCMV/PRV has been transmitted in the first pig to human heart xenotransplantation and contributed to the death of the patient. Although transmitted to the recipient, there is no evidence that PCMV/PRV can infect primate cells including human cells. PCMV/PRV is closely related to the human herpesviruses 6 and 7, and only distantly related to the human CMV (HCMV). Antiviral drugs used for the treatment of HCMV are less effective against PCMV/PRV. However, there are well described strategies to eliminate the virus from pig facilities. In order to detect the virus and to eliminate it, highly sensitive detection methods and the knowledge of how, where and when to screen the donor pigs is required. Here, a comparative testing of organs from pigs of different ages using polymerase chain reaction (PCR)-based and immunological methods was performed. Testing young piglets, PCMV/PRV was detected effectively by PCR in blood, bronchoalveolar lavage fluid, tonsils and heart. In adult animals, detection by PCR was not successful in most cases, because the virus load was below the detection limit or the virus was in its latent stage. Therefore, detection of antibodies against selected recombinant proteins corresponding to epitopes detected by nearly all infected animals in a Western blot assay is advantageous. By contrast, immunological testing is not beneficial in young animals as piglets might have PCMV/PRV-specific antibodies obtained from their infected mother via the colostrum. Using a thoughtful combination of PCR-based and immunological methods, detection of PCMV/PRV in donor pigs for xenotransplantation is feasible and a controlled elimination of the virus by early weaning or other methods is possible.
Collapse
Affiliation(s)
- S Halecker
- Institute of Virology, Free University, Berlin, Germany
| | - S Hansen
- Institute of Virology, Free University, Berlin, Germany
| | - L Krabben
- Institute of Virology, Free University, Berlin, Germany
| | - F Ebner
- Institute of Immunology, Free University, Berlin, Germany
| | - B Kaufer
- Institute of Virology, Free University, Berlin, Germany
| | - J Denner
- Institute of Virology, Free University, Berlin, Germany.
| |
Collapse
|
8
|
Denner J, Schuurman HJ. Early testing of porcine organ xenotransplantation products in humans: Microbial safety as illustrated for porcine cytomegalovirus. Xenotransplantation 2022; 29:e12783. [PMID: 36336900 DOI: 10.1111/xen.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Mueller NJ, Denner J. Porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV): A threat for xenotransplantation? Xenotransplantation 2022; 29:e12775. [PMID: 36082418 DOI: 10.1111/xen.12775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023]
Abstract
The potential for a donor-derived transmission of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) to the recipient has been recognized since pigs were considered candidate donors for xenotransplantation. This review gives a short description of the viral properties and summarizes the current evidence of the effects of PCMV/PRV transmission in preclinical xenotransplantation. Despite evidence that PCMV/PRV does not infect human and non-human primate cells, activation in the transplanted organ and detrimental systemic complications have been described. As PCMV/PRV is a herpesvirus able to establish latency, the importance of adequate screening of donor pigs is emphasized, as no efficient treatment is available. Furthermore, easy and successful ways of elimination of PCMV/PRV from pig herds are indicated.
Collapse
Affiliation(s)
- Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, and University Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Joachim Denner
- Institut of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
10
|
Denner J. Virus Safety of Xenotransplantation. Viruses 2022; 14:1926. [PMID: 36146732 PMCID: PMC9503113 DOI: 10.3390/v14091926] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|