1
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
2
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
3
|
Huang X, Liao J, Feng F, Chen S, Liao E, Li D, Dai X, Dong J, Shao Y. Combined Application of Exosomes and FPR2 Agonist LXA4 in Controlling Fetal Membrane Inflammation and Promoting Fetal Membrane Tissue Repair. Reprod Sci 2022; 30:1979-1993. [DOI: 10.1007/s43032-022-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
4
|
Genome-wide post-transcriptional regulation of bovine mammary gland response to Streptococcus uberis. J Appl Genet 2022; 63:771-782. [PMID: 36066834 DOI: 10.1007/s13353-022-00722-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) as post-transcriptionally regulators of gene expression have been shown to be critical regulators to fine-tuning immune responses, besides their criteria for being an ideal biomarker. The regulatory role of miRNAs in responses to most mastitis-causing pathogens is not well understood. Gram-positive Streptococcus uberis (Str. uberis), the leading pathogen in dairy herds, cause both clinical and subclinical infections. In this study, a system biology approach was used to better understand the main post-transcriptional regulatory functions and elements of bovine mammary gland response to Str. uberis infection. Publicly available miRNA-Seq data containing 50 milk samples of the ten dairy cows (five controls and five infected) were retrieved for this current research. Functional enrichment analysis of predicted targets revealed that highly confident responsive miRNAs (4 up- and 19 downregulated) mainly regulate genes involved in the regulation of transcription, apoptotic process, regulation of cell adhesion, and pro-inflammatory signaling pathways. Time series analysis showed that six gene clusters significantly differed in comparisons between Str. uberis-induced samples with controls. Additionally, other bioinformatic analysis, including upstream network analysis, showed essential genes, including TP53 and TGFB1 and some small molecules, including glucose, curcumin, and LPS, commonly regulate most of the downregulated miRNAs. Upregulated miRNAs are commonly controlled by the most important genes, including IL1B, NEAT1, DICER1 enzyme and small molecules including estradiol, tamoxifen, estrogen, LPS, and epigallocatechin. Our study used results of next-generation sequencing to reveal key miRNAs as the main regulator of gene expression responses to a Gram-positive bacterial infection. Furthermore, by gene regulatory network (GRN) analysis, we can introduce the common upregulator transcription factor of these miRNAs. Such milk-based miRNA signature(s) would facilitate risk stratification for large-scale prevention programs and provide an opportunity for early diagnosis and therapeutic intervention.
Collapse
|
5
|
Hua R, Edey LF, O'Dea KP, Howe L, Herbert BR, Cheng W, Zheng X, MacIntyre DA, Bennett PR, Takata M, Johnson MR. CCR2 mediates the adverse effects of LPS in the pregnant mouse. Biol Reprod 2021; 102:445-455. [PMID: 31599921 DOI: 10.1093/biolre/ioz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
In our earlier work, we found that intrauterine (i.u.) and intraperitoneal (i.p.) injection of LPS (10-μg serotype 0111:B4) induced preterm labor (PTL) with high pup mortality, marked systemic inflammatory response and hypotension. Here, we used both i.u. and i.p. LPS models in pregnant wild-type (wt) and CCR2 knockout (CCR2-/-) mice on E16 to investigate the role played by the CCL2/CCR2 system in the response to LPS. Basally, lower numbers of monocytes and macrophages and higher numbers of neutrophils were found in the myometrium, placenta, and blood of CCR2-/- vs. wt mice. After i.u. LPS, parturition occurred at 14 h in both groups of mice. At 7 h post-injection, 70% of wt pups were dead vs. 10% of CCR2-/- pups, but at delivery 100% of wt and 90% of CCR2-/- pups were dead. Myometrial and placental monocytes and macrophages were generally lower in CCR2-/- mice, but this was less consistent in the circulation, lung, and liver. At 7 h post-LPS, myometrial ERK activation was greater and JNK and p65 lower and the mRNA levels of chemokines were higher and of inflammatory cytokines lower in CCR2-/- vs. wt mice. Pup brain and placental inflammation were similar. Using the IP LPS model, we found that all measures of arterial pressure increased in CCR2-/- but declined in wt mice. These data suggest that the CCL2/CCR2 system plays a critical role in the cardiovascular response to LPS and contributes to pup death but does not influence the onset of inflammation-induced PTL.
Collapse
Affiliation(s)
- Renyi Hua
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK.,The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Laura Howe
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Weiwei Cheng
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xia Zheng
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | - Masao Takata
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
6
|
Ciernikova S, Mego M, Chovanec M. Exploring the Potential Role of the Gut Microbiome in Chemotherapy-Induced Neurocognitive Disorders and Cardiovascular Toxicity. Cancers (Basel) 2021; 13:782. [PMID: 33668518 PMCID: PMC7918783 DOI: 10.3390/cancers13040782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy, targeting not only malignant but also healthy cells, causes many undesirable side effects in cancer patients. Due to this fact, long-term cancer survivors often suffer from late effects, including cognitive impairment and cardiovascular toxicity. Chemotherapy damages the intestinal mucosa and heavily disrupts the gut ecosystem, leading to gastrointestinal toxicity. Animal models and clinical studies have revealed the associations between intestinal dysbiosis and depression, anxiety, pain, impaired cognitive functions, and cardiovascular diseases. Recently, a possible link between chemotherapy-induced gut microbiota disruption and late effects in cancer survivors has been proposed. In this review, we summarize the current understanding of preclinical and clinical findings regarding the emerging role of the microbiome and the microbiota-gut-brain axis in chemotherapy-related late effects affecting the central nervous system (CNS) and heart functions. Importantly, we provide an overview of clinical trials evaluating the relationship between the gut microbiome and cancer survivorship. Moreover, the beneficial effects of probiotics in experimental models and non-cancer patients with neurocognitive disorders and cardiovascular diseases as well as several studies on microbiota modulations via probiotics or fecal microbiota transplantation in cancer patients are discussed.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| |
Collapse
|
7
|
|
8
|
Saeed Z, Greer O, Shah NM. Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy? Antibodies (Basel) 2020; 9:E38. [PMID: 32759839 PMCID: PMC7551810 DOI: 10.3390/antib9030038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The intricacy of the maternal immune system arises from its ability to prevent a maternal immune response against a semi-allogenic fetus, while protecting the mother against harmful pathogens. However, these immunological adaptations may also make pregnant women vulnerable to developing adverse complications from respiratory viral infections. While the influenza and SARS pandemics support this theory, there is less certainty regarding the clinical impact of SARS-CoV-2 in pregnancy. In the current COVID-19 pandemic, vaccine development is key to public preventative strategies. Whilst most viral vaccines are able to induce a seroprotective antibody response, in some high-risk individuals this may not correlate with clinical protection. Some studies have shown that factors such as age, gender, and chronic illnesses can reduce their effectiveness and in this review, we discuss how pregnancy may affect the efficacy and immunogenicity of vaccines. We present literature to support the hypothesis that pregnant women are more susceptible to respiratory viral infections and may not respond to vaccines as effectively. In particular, we focus on the clinical implications of important respiratory viral infections such as influenza during pregnancy, and the pregnancy induced alterations in important leukocytes such as TFH, cTFH and B cells, which play an important role in generating long-lasting and high-affinity antibodies. Finally, we review how this may affect the efficacy of vaccines against influenza in pregnancy and highlight areas that require further research.
Collapse
Affiliation(s)
| | | | - Nishel Mohan Shah
- Academic Department of Obstetrics & Gynaecology, Imperial College London, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK; (Z.S.); (O.G.)
| |
Collapse
|
9
|
Zöllner J, Lambden S, Nasri NM, Leiper J, Johnson MR. Rapid onset of severe septic shock in the pregnant mouse†. Biol Reprod 2020; 100:505-513. [PMID: 30184059 DOI: 10.1093/biolre/ioy193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Globally, sepsis is a major cause of mortality through the combination of cardiovascular collapse and multiorgan dysfunction. Pregnancy appears to increase the risk of death in sepsis, but the exact reason for the greater severity is unclear. In this study, we used polymicrobial sepsis induced by cecal ligation and puncture (CLP) and high-dose intraperitoneal lipopolysaccharide (LPS; 10 or 40 mg, serotype 0111: B4) to test the hypotheses that pregnant mice are more susceptible to sepsis and that this susceptibility was mediated through an excessive innate response causing a more severe cardiovascular collapse rather than a reduction in microbe killing. METHODS AND RESULTS Initial studies found that mortality rates were greater, and that death occurred sooner in pregnant mice exposed to CLP and LPS. In pregnant and nonpregnant CD1 mice monitored with radiotelemetry probes, cardiovascular collapse occurred sooner in pregnant mice, but once initiated, occurred over a similar timescale. In a separate study, tissue, serum, and peritoneal fluid (for protein, flow cytometry, nitric oxide, and bacterial load studies) were collected. At baseline, there was no apparent Th1/Th2 bias in pregnant mice. Post CLP, the circulating cytokine response was the same, but leukocyte infiltration in the lung was greater in pregnant mice, but only TNFα levels were greater in lung tissue. The bacterial load in blood and peritoneal fluid was similar in both groups. CONCLUSION Sepsis-related mortality was markedly greater in pregnant mice. Cardiovascular collapse and organ dysfunction occurred sooner in pregnancy, but bacterial killing was similar. Circulating and tissue cytokine levels were similar, but immune cell extravasation into other organs was greater in pregnant mice. These data suggest that an excessive innate immune system response as shown by the exaggerated lung infiltration of leukocytes may be responsible for the greater mortality. Approaches that reduce off-site trafficking may improve the prognosis of sepsis in pregnancy.
Collapse
Affiliation(s)
- Julia Zöllner
- Chelsea and Westminster Hospital, London, UK.,Institute of Reproductive and Developmental Biology, London, UK.,Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simon Lambden
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Noor Mohd Nasri
- Chelsea and Westminster Hospital, London, UK.,Institute of Reproductive and Developmental Biology, London, UK.,Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - James Leiper
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Mark R Johnson
- Chelsea and Westminster Hospital, London, UK.,Institute of Reproductive and Developmental Biology, London, UK
| |
Collapse
|
10
|
Multi-walled carbon nanotubes exacerbate doxorubicin-induced cardiotoxicity by altering gut microbiota and pulmonary and colonic macrophage phenotype in mice. Toxicology 2020; 435:152410. [PMID: 32068018 DOI: 10.1016/j.tox.2020.152410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Epidemiologic studies show that the levels of air pollutants and particulate matter are positively associated with the morbidity and mortality of cardiovascular diseases. Here we demonstrate that the intratracheal instillation of multi-walled carbon nanotubes (MWCNTs), a standard fine particle, exacerbate doxorubicin (DOX)-induced cardiotoxicity in mice through altering gut microbiota and pulmonary and colonic macrophage phenotype. MWCNTs (25 μg/kg per day, 5 days a week for 3 weeks) promoted cardiotoxicity and apoptosis in the DOX (2 mg/kg, twice a week for 5 weeks)-treated C57BL/6 mice. MWCNTs exaggerated DOX-induced gut microbiota dysbiosis characterized by the increased abundances of Helicobacteraceae and Coriobacteriaceae. In addition, MWCNTs promoted DOX-induced M1-like polarization of colonic macrophages with an increase in TNF-α, IL-1β and CC chemokine ligand 2 in peripheral blood. Importantly, treatment with the antibiotics attenuated MWCNTs plus DOX-induced apoptosis of cardiomyocytes and M1-like polarization of colonic macrophages. The fecal microbiota transplantation demonstrated that MWCNTs exaggerated DOX-induced cardiotoxicity with M1-like polarization of colonic macrophages. The conditioned medium from MWCNTs-treated pulmonary macrophages promoted DOX-induced gut microbiota dysbiosis and colonic macrophage polarization. Furthermore, the co-culture of macrophages and fecal bacteria promoted M1-like macrophage polarization and their production of TNF-α and IL-1β, and thereby exacerbated the effects of MWCNTs. Moreover, IL-1β and TNF-α blockade, either alone or in combination attenuated MWCNTs-exacerbated cardiotoxicity. In summary, MWCNTs exacerbate DOX-induced cardiotoxicity in mice through gut microbiota and pulmonary and colonic macrophage interaction. Our findings identify a novel mechanism of action of inhaled particle-driven cardiotoxicity.
Collapse
|
11
|
|
12
|
Inhibition of Dimethylarginine Dimethylaminohydrolase 1 Improves the Outcome of Sepsis in Pregnant Mice. Shock 2019; 54:498-506. [DOI: 10.1097/shk.0000000000001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Shah NM, Edey LF, Imami N, Johnson MR. Human labour is associated with altered regulatory T cell function and maternal immune activation. Clin Exp Immunol 2019; 199:182-200. [PMID: 31617583 DOI: 10.1111/cei.13384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
During human pregnancy, regulatory T cell (Treg ) function is enhanced and immune activation is repressed allowing the growth and development of the feto-placental unit. Here, we have investigated whether human labour is associated with a reversal of the pregnancy-induced changes in the maternal immune system. We tested the hypothesis that human labour is associated with a decline in Treg function, specifically their ability to modulate Toll-like receptor (TLR)-induced immune responses. We studied the changes in cell number, activation status and functional behaviour of peripheral blood, myometrial (myoMC) and cord blood mononuclear cells (CBMC) with the onset of labour. We found that Treg function declines and that Treg cellular targets change with labour onset. The changes in Treg function were associated with increased activation of myoMC, assessed by their expression of major histocompatibility complex (MHC) class II molecules and CBMC inflammatory cells. The innate immune system showed increased activation, as shown by altered monocyte and neutrophil cell phenotypes, possibly to be ready to respond to microbial invasion after birth or to contribute to tissue remodelling. Our results highlight changes in the function of the adaptive and innate immune systems that may have important roles in the onset of human labour.
Collapse
Affiliation(s)
- N M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - L F Edey
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - M R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
14
|
Greer O, Shah NM, Sriskandan S, Johnson MR. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. Int J Mol Sci 2019; 20:E5388. [PMID: 31671794 PMCID: PMC6861904 DOI: 10.3390/ijms20215388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis contributes significantly to global morbidity and mortality, particularly in vulnerable populations. Pregnant and recently pregnant women are particularly prone to rapid progression to sepsis and septic shock, with 11% of maternal deaths worldwide being attributed to sepsis. The impact on the neonate is considerable, with 1 million neonatal deaths annually attributed to maternal infection or sepsis. Pregnancy specific physiological and immunological adaptations are likely to contribute to a greater impact of infection, but current approaches to the management of sepsis are based on those developed for the non-pregnant population. Pregnancy-specific strategies are required to optimise recognition and management of these patients. We review current knowledge of the physiology and immunology of pregnancy and propose areas of research, which may advance the development of pregnancy-specific diagnostic and therapeutic approaches to optimise the care of pregnant women and their babies.
Collapse
Affiliation(s)
- Orene Greer
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Nishel Mohan Shah
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Shiranee Sriskandan
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | - Mark R Johnson
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
15
|
van Broekhoven A, Krijnen PAJ, Fuijkschot WW, Morrison MC, Zethof IPA, van Wieringen WN, Smulders YM, Niessen HWM, Vonk ABA. Short-term LPS induces aortic valve thickening in ApoE*3Leiden mice. Eur J Clin Invest 2019; 49:e13121. [PMID: 31013351 DOI: 10.1111/eci.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recently, it was shown that 12 weeks of lipopolysaccharide (LPS) administration to nonatherosclerotic mice induced thickening of the aortic heart valve (AV). Whether such effects may also occur even earlier is unknown. As most patients with AV stenosis also have atherosclerosis, we studied the short-term effect of LPS on the AVs in an atherosclerotic mouse model. METHODS ApoE*3Leiden mice, on an atherogenic diet, were injected intraperitoneally with either LPS or phosphate buffered saline (PBS), and sacrificed 2 or 15 days later. AVs were assessed for size, fibrosis, glycosaminoglycans (GAGs), lipids, calcium deposits, iron deposits and inflammatory cells. RESULTS LPS injection caused an increase in maximal leaflet thickness at 2 days (128.4 µm) compared to PBS-injected mice (67.8 µm; P = 0.007), whereas at 15 days this was not significantly different. LPS injection did not significantly affect average AV thickness on day 2 (37.8 µm), but did significantly increase average AV thickness at day 15 (41.6 µm; P = 0.038) compared to PBS-injected mice (31.7 and 32.3 µm respectively). LPS injection did not affect AV fibrosis, GAGs and lipid content. Furthermore, no calcium deposits were found. Iron deposits, indicative for valve haemorrhage, were observed in one AV of the PBS-injected group (a day 2 mouse; 9.1%) and in five AVs of the LPS-injected group (both day 2- and 15 mice; 29.4%). No significant differences in inflammatory cell infiltration were observed upon LPS injection. CONCLUSION Short-term LPS apparently has the potential to increase AV thickening and haemorrhage. These results suggest that systemic inflammation can acutely compromise AV structure.
Collapse
Affiliation(s)
- Amber van Broekhoven
- Department of Pathology, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiac Surgery, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Wessel W Fuijkschot
- Department of Pathology, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Ilse P A Zethof
- Department of Pathology, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Wessel N van Wieringen
- Department of Epidemiology and Biostatistics, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Department of Mathematics, VU University, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiac Surgery, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands
| | - Alexander B A Vonk
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiac Surgery, Amsterdam UMC-Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Huang K, Liu Y, Tang H, Qiu M, Li C, Duan C, Wang C, Yang J, Zhou X. Glabridin Prevents Doxorubicin-Induced Cardiotoxicity Through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Front Pharmacol 2019; 10:107. [PMID: 30833897 PMCID: PMC6387923 DOI: 10.3389/fphar.2019.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
The chemotherapeutic drug doxorubicin (DOX) provokes a dose-related cardiotoxicity. Thus, there is an urgent need to identify the underlying mechanisms and develop strategies to overcome them. Here we demonstrated that glabridin (GLA), an isoflavone from licorice root, prevents DOX-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization in mice. GLA reduced DOX-induced leakage of myocardial enzymes including aminotransferase, creatine kinase, lactate dehydrogenase, and creatine kinase-MB. GLA downregulated pro-apoptotic proteins (Bax, cleaved-caspase 9 and cleaved-caspase 3) and upregulated anti-apoptotic proteins (HAX-1 and Bcl-2) in the cardiac tissues. In addition, GLA modulated DOX-induced dysbiosis of gut microbiota and thereby decreased the ratio of M1/M2 colonic macrophage, accompanied by the downregulated lipopolysaccharide (LPS) and upregulated butyrate in the feces and peripheral blood. The leakage of myocardial enzymes induced by the DOX was decreased by antibiotics treatment, but not altered by co-treatment with the GLA and antibiotics. The ratio of M1/M2 colonic macrophage and leakage of myocardial enzymes reduced by the GLA were greatly increased by the Desulfovibrio vulgaris or LPS but decreased by the butyrate. Depletion of the macrophage attenuated DOX-induced cardiotoxicity but failed to further affect the effects of GLA. Importantly, GLA decreased production of M1 cytokines (IL-1β and TNF-α) but increased production of M2 cytokines (IL-10 and TGF-β) in the colonic macrophage with the downregulation of NF-κB and the upregulation of STAT6. In summary, GLA prevents DOX-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization, and may serve as a potential therapeutic strategy for the DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Keqing Huang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yanzhuo Liu
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Key Laboratory of Cognitive Science, College of Biomedical Engineering, South Central University for Nationalities, Wuhan, China
| | - Honglin Tang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao Qiu
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Shenzhen Stomatological Hospital of Southern Medical University, Shenzhen, China
| | - Chenhong Li
- Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South Central University for Nationalities, Wuhan, China
| | - Chenfan Duan
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chenlong Wang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|