1
|
Dibbon KC, Mercer GV, Maekawa AS, Hanrahan J, Steeves KL, Ringer LCM, Simpson AJ, Simpson MJ, Baschat AA, Kingdom JC, Macgowan CK, Sled JG, Jobst KJ, Cahill LS. Polystyrene micro- and nanoplastics cause placental dysfunction in mice†. Biol Reprod 2024; 110:211-218. [PMID: 37724921 DOI: 10.1093/biolre/ioad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 μm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Katherine C Dibbon
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alexandre S Maekawa
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lauren C M Ringer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet A Baschat
- Department of Gynecology & Obstetrics, Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
2
|
Berger R, Stelzl P, Maul H. Administration of Antenatal Corticosteroids: Optimal Timing. Geburtshilfe Frauenheilkd 2024; 84:48-58. [PMID: 38205043 PMCID: PMC10781581 DOI: 10.1055/a-2202-5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024] Open
Abstract
The effectiveness of antenatal corticosteroids (ACS) in significantly reducing respiratory distress syndrome (RDS) depends crucially on the timing. It is successful if delivery takes place between 24 hours and seven days following administration; after this period, the side effects seem to predominate. In addition, an increased rate of mental impairment and behavioral disorders are observed in children born full-term after ACS administration. The optimal timing of ACS administration depends crucially on the given indication; to date, it has been achieved in only 25-40% of cases. ACS administration is always indicated in PPROM, in severe early pre-eclampsia, in fetal IUGR with zero or reverse flow in the umbilical artery, in placenta previa with bleeding, and in patients experiencing premature labor with a cervical length < 15 mm. The risk of women with asymptomatic cervical insufficiency giving birth within seven days is very low. In this case, ACS should not be administered even if the patient's cervical length is less than 15 mm, provided that the cervix is closed and there are no other risk factors for a premature birth. The development of further diagnostic methods with improved power to predict premature birth is urgently needed in order to optimize the timing of ACS administration in this patient population. Caution when administering ACS is also indicated in women experiencing premature labor who have a cervical length ≥ 15 mm. Further studies using amniocentesis are needed in order to identify the patient population with microbial invasion of the amniotic cavity/intra-amniotic infection (MIAC/IAI), and to define threshold values at which delivery is indicated. ACS administration is not performed as an emergency measure, usually not even before transfer to a perinatal center. Therefore, whenever possible, the indication for ACS administration should be determined by a clinician who is highly experienced in perinatology.
Collapse
Affiliation(s)
- Richard Berger
- Klinik für Gynäkologie und Geburtshilfe, Marienhaus Klinikum St. Elisabeth, Akademisches Lehrkrankenhaus der Universitäten Mainz und Maastricht, Neuwied,
Germany
| | - Patrick Stelzl
- Universitätsklinik für Gynäkologie, Geburtshilfe und gynäkologische Endokrinologie, Kepler Universitätsklinikum, Johannes Kepler Universität Linz, Linz,
Austria
| | - Holger Maul
- Frauenkliniken, Asklepios Kliniken Barmbek, Wandsbek und Nord-Heidberg, Hamburg, Germany
| |
Collapse
|
3
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
4
|
Parsons A, Netsanet A, Seedorf G, Abman SH, Taglauer ES. Understanding the role of placental pathophysiology in the development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2022; 323:L651-L658. [PMID: 36219136 PMCID: PMC9722259 DOI: 10.1152/ajplung.00204.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
The associations between bronchopulmonary dysplasia (BPD) and the gestational pathologies of chorioamnionitis (CA) and hypertensive disorders of pregnancy (HDP) have become increasingly well recognized. However, the mechanisms through which these antenatal conditions cause increased risk of BPD remain less well characterized. The objective of this review is to discuss the role of the placenta in BPD predisposition as a primary driver of intrauterine alterations adversely impacting fetal lung development. We hypothesize that due to similarities in structure and function, placental disorders during pregnancy can uniquely impact the developing fetal lung, creating a unique placental-pulmonary connection. In the current review, we explore this hypothesis through analysis of clinical literature and preclinical model systems evaluating BPD predisposition, discussion of BPD phenotypes, and an overview on strategies to incorporate placental investigation into research on fetal lung development. We also discuss important concepts learned from research on antenatal steroids as a modulator fetal lung development. Finally, we propose that the appropriate selection of animal models and establishment of in vitro lung developmental model systems incorporating primary human placental components are key in continuing to understand and address antenatal predisposition to BPD.
Collapse
Affiliation(s)
- Andrew Parsons
- Boston Combined Residency Program, Boston Children's Hospital, Boston, Massachusetts
| | - Adom Netsanet
- University of Colorado School of Medicine, Aurora, Colorado
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Seedorf
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth S Taglauer
- Department of Pediatrics, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
5
|
Melamed N, Baschat A, Yinon Y, Athanasiadis A, Mecacci F, Figueras F, Berghella V, Nazareth A, Tahlak M, McIntyre HD, Da Silva Costa F, Kihara AB, Hadar E, McAuliffe F, Hanson M, Ma RC, Gooden R, Sheiner E, Kapur A, Divakar H, Ayres‐de‐Campos D, Hiersch L, Poon LC, Kingdom J, Romero R, Hod M. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet 2021; 152 Suppl 1:3-57. [PMID: 33740264 PMCID: PMC8252743 DOI: 10.1002/ijgo.13522] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of the fetus to meet its growth potential due to a pathological factor, most commonly placental dysfunction. Worldwide, FGR is a leading cause of stillbirth, neonatal mortality, and short- and long-term morbidity. Ongoing advances in clinical care, especially in definitions, diagnosis, and management of FGR, require efforts to effectively translate these changes to the wide range of obstetric care providers. This article highlights agreements based on current research in the diagnosis and management of FGR, and the areas that need more research to provide further clarification of recommendations. The purpose of this article is to provide a comprehensive summary of available evidence along with practical recommendations concerning the care of pregnancies at risk of or complicated by FGR, with the overall goal to decrease the risk of stillbirth and neonatal mortality and morbidity associated with this condition. To achieve these goals, FIGO (the International Federation of Gynecology and Obstetrics) brought together international experts to review and summarize current knowledge of FGR. This summary is directed at multiple stakeholders, including healthcare providers, healthcare delivery organizations and providers, FIGO member societies, and professional organizations. Recognizing the variation in the resources and expertise available for the management of FGR in different countries or regions, this article attempts to take into consideration the unique aspects of antenatal care in low-resource settings (labelled “LRS” in the recommendations). This was achieved by collaboration with authors and FIGO member societies from low-resource settings such as India, Sub-Saharan Africa, the Middle East, and Latin America.
Collapse
Affiliation(s)
- Nir Melamed
- Division of Maternal Fetal MedicineDepartment of Obstetrics and GynecologySunnybrook Health Sciences CentreUniversity of TorontoTorontoONCanada
| | - Ahmet Baschat
- Center for Fetal TherapyDepartment of Gynecology and ObstetricsJohns Hopkins UniversityBaltimoreMDUSA
| | - Yoav Yinon
- Fetal Medicine UnitDepartment of Obstetrics and GynecologySheba Medical CenterTel‐HashomerSackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Apostolos Athanasiadis
- Third Department of Obstetrics and GynecologyAristotle University of ThessalonikiThessalonikiGreece
| | - Federico Mecacci
- Maternal Fetal Medicine UnitDivision of Obstetrics and GynecologyDepartment of Biomedical, Experimental and Clinical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesc Figueras
- Maternal‐Fetal Medicine DepartmentBarcelona Clinic HospitalUniversity of BarcelonaBarcelonaSpain
| | - Vincenzo Berghella
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Amala Nazareth
- Jumeira Prime Healthcare GroupEmirates Medical AssociationDubaiUnited Arab Emirates
| | - Muna Tahlak
- Latifa Hospital for Women and ChildrenDubai Health AuthorityEmirates Medical AssociationMohammad Bin Rashid University for Medical Sciences, Dubai, United Arab Emirates
| | | | - Fabrício Da Silva Costa
- Department of Gynecology and ObstetricsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Anne B. Kihara
- African Federation of Obstetricians and GynaecologistsKhartoumSudan
| | - Eran Hadar
- Helen Schneider Hospital for WomenRabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Fionnuala McAuliffe
- UCD Perinatal Research CentreSchool of MedicineNational Maternity HospitalUniversity College DublinDublinIreland
| | - Mark Hanson
- Institute of Developmental SciencesUniversity Hospital SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of SouthamptonSouthamptonUK
| | - Ronald C. Ma
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Institute of Diabetes and ObesityThe Chinese University of Hong KongHong Kong SARChina
| | - Rachel Gooden
- FIGO (International Federation of Gynecology and Obstetrics)LondonUK
| | - Eyal Sheiner
- Soroka University Medical CenterBen‐Gurion University of the NegevBe’er‐ShevaIsrael
| | - Anil Kapur
- World Diabetes FoundationBagsværdDenmark
| | | | | | - Liran Hiersch
- Sourasky Medical Center and Sackler Faculty of MedicineLis Maternity HospitalTel Aviv UniversityTel AvivIsrael
| | - Liona C. Poon
- Department of Obstetrics and GynecologyPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong SAR, China
| | - John Kingdom
- Division of Maternal Fetal MedicineDepartment of Obstetrics and GynecologyMount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Roberto Romero
- Perinatology Research BranchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMDUSA
| | - Moshe Hod
- Helen Schneider Hospital for WomenRabin Medical CenterPetach TikvaIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
6
|
Smolich JJ, Mynard JP. Antenatal betamethasone redistributes central blood flows and preferentially augments right ventricular output and pump function in preterm fetal lambs. Am J Physiol Regul Integr Comp Physiol 2021; 320:R611-R618. [PMID: 33596742 DOI: 10.1152/ajpregu.00273.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glucocorticosteroid betamethasone, which is routinely administered prior to anticipated preterm birth to enhance maturation of the lungs and the cardiovascular system, has diverse fetal regional blood flow effects ranging from increased pulmonary flow to decreased cerebral flow. The aim of this study was to test the hypothesis that these diverse effects reflect alterations in major central flow patterns that are associated with complementary shifts in left ventricular (LV) and right ventricular (RV) pumping performance. Studies were performed in anesthetized preterm fetal lambs (gestation = 127 ± 1 days, term = 147 days) with (n = 14) or without (n = 12) preceding betamethasone treatment via maternal intramuscular injection. High-fidelity central arterial blood pressure and flow signals were obtained to calculate LV and RV outputs and total hydraulic power. Betamethasone therapy was accompanied by 1) increased RV, but not LV, output; 2) a greater RV than LV increase in total power; 3) a redistribution of LV output away from the fetal upper body region and toward the lower body and placenta; 4) a greater proportion of RV output passing to the lungs, and a lesser proportion to the lower body and placenta; and 5) a change in the relative contribution of venous streams to ventricular filling, with the LV having increased pulmonary venous and decreased foramen ovale components, and the RV having lesser superior vena caval and greater inferior vena caval portions. Taken together, these findings suggest that antenatal betamethasone produces a widespread redistribution of central arterial and venous flows in the fetus, accompanied by a preferential rise in RV pumping performance.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Stortz G, Cahill LS, Chandran AR, Baschat A, Sled JG, Macgowan CK. Quantification of Wave Reflection in the Human Umbilical Artery From Asynchronous Doppler Ultrasound Measurements. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3749-3757. [PMID: 32746120 PMCID: PMC7606782 DOI: 10.1109/tmi.2020.3004511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Elevated umbilical artery pulsatility is a widely used biomarker for placental pathology leading to intra-uterine growth restriction and, in severe cases, still-birth. It has been hypothesized that placental pathology modifies umbilical artery pulsatility by altering the degree to which the pulse pressure wave, which originates from the fetal heart, is reflected from the placental vasculature to interfere with the incident wave. Here we present a method for estimating the reflected pulse wave in the umbilical artery of human fetuses using asynchronously acquired Doppler ultrasound measurements from the two ends of the umbilical cord. This approach assumes non-dispersive and loss-less propagation of the waves along the artery and models the reflection process as a linear system with a parameterized impulse response. Model parameters are determined from the measured Doppler waveforms by constrained optimization. Velocity waveforms were obtained from 142 pregnant volunteers where 123 met data quality criteria in at least one umbilical artery. The reflection model was consistent with the measured waveforms in 183 of 212 arteries that were analyzed. The analysis method was validated by applying it to simulated datasets and comparing solutions to ground-truth. With measurement noise levels typical of clinical ultrasound, parameters describing the reflected wave were accurately determined.
Collapse
|
8
|
Cahill LS, Shinar S, Whitehead CL, Hobson SR, Stortz G, Ayyathurai V, Ravi Chandran A, Rahman A, Kingdom JC, Baschat A, Murphy KE, Serghides L, Macgowan CK, Sled JG. Sex differences in modulation of fetoplacental vascular resistance in growth-restricted mouse fetuses following betamethasone administration: comparisons with human fetuses. Am J Obstet Gynecol MFM 2020; 3:100251. [PMID: 33451599 DOI: 10.1016/j.ajogmf.2020.100251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Maternally administered corticosteroids are routinely used to accelerate fetal lung maturation in pregnancies at risk of early preterm delivery. Although, among the subgroup with growth restriction, a majority show a temporary improvement in umbilical artery Doppler waveforms that may be sustained up to 7 days, a minority will acutely decompensate in response to corticosteroids in association with deteriorating umbilical and fetal Doppler waveforms. The basis for such acute Doppler changes is presently unknown. Our group has developed a noninvasive ultrasound methodology to measure wave reflections in the umbilical artery and have established that wave reflection metrics are sensitive to structural changes in the placental vasculature and to acute changes in vascular tone. Using this approach, we demonstrated in healthy pregnant mice that fetoplacental vascular resistance decreased in betamethasone-treated mice compared with saline-treated controls. OBJECTIVE This study aimed to investigate the effects of betamethasone administration on the wave reflection metrics in a mouse model of fetal growth restriction and to compare these findings with equivalent measurements in human fetuses. STUDY DESIGN Pregnant CD-1 mice were housed from embryonic day 14.5 to embryonic day 17.5 in either a normoxic (21% O2, n=24) or hypoxic environment (11% O2, n=22), the latter being an established mouse model of fetal growth restriction. To investigate the effect of maternally administered betamethasone on the fetoplacental vasculature, ultrasound imaging was performed at baseline and 4 hours after treatment (either betamethasone or sterile saline). Umbilical artery wave reflection metrics were compared between the groups and for the effect of fetal sex. In addition, a cohort of 10 pregnant women with elevated umbilical artery pulsatility index and evidence of fetal growth restriction and 6 controls were imaged before and after corticosteroid administration. RESULTS In the mouse model, after betamethasone administration, the female fetuses from the hypoxia group showed a 15% increase in umbilical artery diameter, a 98% increase in umbilical artery blood flow, and a 27% decrease in umbilical artery reflection coefficient, whereas the males from the hypoxia group showed no substantial changes. In agreement with our mouse findings, umbilical artery reflections were found to be larger in human growth-restricted fetuses than controls in women at risk of preterm birth. CONCLUSION Our studies provide insight into the mechanism whereby the human growth-restricted fetus may exhibit a temporary favorable fetoplacental vascular response to maternally administered corticosteroids. Further investigations are needed to understand why the male growth-restricted fetus seems unable to mount this favorable vascular response.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada.
| | - Shiri Shinar
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Clare L Whitehead
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada; Pregnancy Research Centre, Department of Maternal-Fetal Medicine, The Royal Women's Hospital, Parkville, Victoria Australia
| | - Sebastian R Hobson
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Greg Stortz
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Viji Ayyathurai
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anjana Ravi Chandran
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anum Rahman
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Baschat
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD
| | - Kellie E Murphy
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Serghides
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|