1
|
Kranaster P, Blum J, Dold JEGA, Wittmann V, Leist M. Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells. J Neurochem 2023; 164:481-498. [PMID: 36504018 DOI: 10.1111/jnc.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.
Collapse
Affiliation(s)
- Petra Kranaster
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jonathan Blum
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
2
|
Khariton M, McClune CJ, Brower KK, Klemm S, Sattely ES, Fordyce PM, Wang B. Alleviating Cell Lysate-Induced Inhibition to Enable RT-PCR from Single Cells in Picoliter-Volume Double Emulsion Droplets. Anal Chem 2023; 95:935-945. [PMID: 36598332 DOI: 10.1021/acs.analchem.2c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microfluidic droplet assays enable single-cell polymerase chain reaction (PCR) and sequencing analyses at unprecedented scales, with most methods encapsulating cells within nanoliter-sized single emulsion droplets (water-in-oil). Encapsulating cells within picoliter double emulsion (DE) (water-in-oil-in-water) allows sorting droplets with commercially available fluorescence-activated cell sorter (FACS) machines, making it possible to isolate single cells based on phenotypes of interest for downstream analyses. However, sorting DE droplets with standard cytometers requires small droplets that can pass FACS nozzles. This poses challenges for molecular biology, as prior reports suggest that reverse transcription (RT) and PCR amplification cannot proceed efficiently at volumes below 1 nL due to cell lysate-induced inhibition. To overcome this limitation, we used a plate-based RT-PCR assay designed to mimic reactions in picoliter droplets to systematically quantify and ameliorate the inhibition. We find that RT-PCR is blocked by lysate-induced cleavage of nucleic acid probes and primers, which can be efficiently alleviated through heat lysis. We further show that the magnitude of inhibition depends on the cell type, but that RT-PCR can proceed in low-picoscale reaction volumes for most mouse and human cell lines tested. Finally, we demonstrate one-step RT-PCR from single cells in 20 pL DE droplets with fluorescence quantifiable via FACS. These results open up new avenues for improving picoscale droplet RT-PCR reactions and expanding microfluidic droplet-based single-cell analysis technologies.
Collapse
Affiliation(s)
- Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Conor J McClune
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, California94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, California94305, United States.,Department of Genetics, Stanford University, Stanford, California94305, United States.,ChEM-H Institute, Stanford University, Stanford, California94305, United States.,Chan Zuckerberg Biohub, San Francisco, California94110, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
3
|
Sharkey ME, Kumar N, Mantero AMA, Babler KM, Boone MM, Cardentey Y, Cortizas EM, Grills GS, Herrin J, Kemper JM, Kenney R, Kobetz E, Laine J, Lamar WE, Mader CC, Mason CE, Quintero AZ, Reding BD, Roca MA, Ryon K, Solle NS, Schürer SC, Shukla B, Stevenson M, Stone T, Tallon JJ, Venkatapuram SS, Vidovic D, Williams SL, Young B, Solo-Gabriele HM. Lessons learned from SARS-CoV-2 measurements in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149177. [PMID: 34375259 PMCID: PMC8294117 DOI: 10.1016/j.scitotenv.2021.149177] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 05/02/2023]
Abstract
Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients. Lessons learned from this WBS program address the variability of water quality, new detection technologies, the range of detectable viral loads in wastewater, and the predictive value of integrating environmental and human surveillance data. Data from our WBS program indicated that water quality was statistically different between sewer sampling sites, with more variability observed in wastewater coming from individual buildings compared to clusters of buildings. A new detection technology was developed based upon the use of a novel polymerase called V2G. Detectable levels of SARS-CoV-2 in wastewater varied from 102 to 106 genomic copies (gc) per liter of raw wastewater (L). Integration of environmental and human surveillance data indicate that WBS detection of 100 gc/L of SARS-CoV-2 RNA in wastewater was associated with a positivity rate of 4% as detected by human surveillance in the wastewater catchment area, though confidence intervals were wide (β ~ 8.99 ∗ ln(100); 95% CI = 0.90-17.08; p < 0.05). Our data also suggest that early detection of COVID-19 surges based on correlations between viral load in wastewater and human disease incidence could benefit by increasing the wastewater sample collection frequency from weekly to daily. Coupling simpler and faster detection technology with more frequent sampling has the potential to improve the predictive potential of using WBS of SARS-CoV-2 for early detection of the onset of COVID-19.
Collapse
Affiliation(s)
- Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alejandro M A Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristina M Babler
- Department of Marine Biology and Ecology, University of Miami, Key Biscayne, FL, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yoslayma Cardentey
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elena M Cortizas
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jenny M Kemper
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard Kenney
- Housing Operations & Facilities, University of Miami, Coral Gables, FL, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Walter E Lamar
- Facilities Safety & Compliance, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher C Mader
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew A Roca
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL, USA
| | - Bhavarth Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas Stone
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL, USA
| | | | - Dusica Vidovic
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL, USA
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Young
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
4
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Nathamgari SSP, Pathak N, Lemaitre V, Mukherjee P, Muldoon JJ, Peng CY, McGuire T, Leonard JN, Kessler JA, Espinosa HD. Nanofountain Probe Electroporation Enables Versatile Single-Cell Intracellular Delivery and Investigation of Postpulse Electropore Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002616. [PMID: 33006271 PMCID: PMC7646188 DOI: 10.1002/smll.202002616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Indexed: 05/13/2023]
Abstract
Introducing exogenous molecules into cells with high efficiency and dosage control is a crucial step in basic research as well as clinical applications. Here, the capability of the nanofountain probe electroporation (NFP-E) system to deliver proteins and plasmids in a variety of continuous and primary cell types with appropriate dosage control is reported. It is shown that the NFP-E can achieve fine control over the relative expression of two cotransfected plasmids. Finally, the dynamics of electropore closure after the pulsing ends with the NFP-E is investigated. Localized electroporation has recently been utilized to demonstrate the converse process of delivery (sampling), in which a small volume of the cytosol is retrieved during electroporation without causing cell lysis. Single-cell temporal sampling confers the benefit of monitoring the same cell over time and can provide valuable insights into the mechanisms underlying processes such as stem cell differentiation and disease progression. NFP-E parameters that maximize the membrane resealing time, which is essential for increasing the sampled volume and in meeting the challenge of monitoring low copy number biomarkers, are identified. Its application in CRISPR/Cas9 gene editing, stem cell reprogramming, and single-cell sampling studies is envisioned.
Collapse
Affiliation(s)
- Samba Shiva Prasad Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph J Muldoon
- Department of Chemical and Biological Engineering and Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Tammy McGuire
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering and Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Horacio Dante Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|