1
|
Alves AV, Kureki RK, Trevizani TH, Figueira RCL, Choueri RB. Effects of metals in sediment under acidification and temperature rise scenarios on reproduction of the copepod Nitokra sp. MARINE POLLUTION BULLETIN 2024; 209:117125. [PMID: 39437611 DOI: 10.1016/j.marpolbul.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The potential effects of trace metal pollution in sediment under scenarios of warming and CO2-driven acidification on the fecundity of the copepod Nitokra sp. were assessed. Ovigerous females were exposed to laboratory-spiked sediments at two different concentrations of a mixture of metals (Cu, Pb, Zn, and Hg) and to the control (non-spiked sediments), in combinations of two pH (7.7 and 7.1) and two temperatures (25 °C and 27 °C). The results revealed that CO2-driven acidification affected the fecundity of Nitokra sp. by interacting with temperature rise and metal contamination. While rising temperatures generally increased Nitokra sp. fecundity, when combined with metal addition and a CO2 acidified environment, warming led to a decline in offspring production. This is the first study with copepods to demonstrate the interactive effects of sediment contamination by metals, CO2-driven acidification, and temperature increase. Preliminary experiments are required to understand the complex interactive effects of multiple drivers.
Collapse
Affiliation(s)
- Aline Vecchio Alves
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil.
| | - Rafael Keiji Kureki
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| | - Tailisi Hoppe Trevizani
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| |
Collapse
|
2
|
Pacella SR, Brown CA, Labiosa RG, Hales B, Collura TCM, Evans W, Waldbusser GG. Feedbacks Between Estuarine Metabolism and Anthropogenic CO 2 Accelerate Local Rates of Ocean Acidification and Hasten Threshold Exceedances. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2024; 129:e2023JC020313. [PMID: 39391375 PMCID: PMC11462958 DOI: 10.1029/2023jc020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/11/2024] [Indexed: 10/12/2024]
Abstract
Attribution of the ocean acidification (OA) signal in estuarine carbonate system observations is necessary for quantifying the impacts of global anthropogenicCO 2 emissions on water quality, and informing managers of the efficacy of potential mitigation options. We present an analysis of observational data to characterize dynamics and drivers of seasonal carbonate system variability in two seagrass habitats of Puget Sound, WA, USA, and estimate how carbon accumulations due to anthropogenicCO 2 emissionsC anth interact with these drivers of carbonate chemistry to determine seasonally resolved rates of acidification in these habitats. Three independent simulations ofC anth accumulation from 1765 to 2100 were run using two previously published methods and one novel method forC anth estimation. Our results revealed persistent seasonal differences in the magnitude of carbonate system responses to anthropogenicCO 2 emissions caused by seasonal metabolic changes to the buffering capacity of estuarine waters. The seasonal variability ofpH T and p CO 2 is increased (while that ofΩ aragonite is decreased) and acidification rates are accelerated when compared with open-ocean estimates, highlighting how feedbacks between local metabolism andC anth can control the susceptibility of estuarine habitats to OA impacts. The changes in seasonal variability can shorten the timeline to exceedance of established physiological thresholds for endemic organisms and existing Washington State water quality criteria for pH. We highlight howC anth estimation uncertainties manifest in shallow coastal waters and limit our ability to predict impacts to coastal organisms and ecosystems from anthropogenicCO 2 emissions.
Collapse
Affiliation(s)
- Stephen R Pacella
- Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA
| | - Cheryl A Brown
- Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA
| | - Rochelle G Labiosa
- Region 10, United States Environmental Protection Agency, Seattle, WA, USA
| | - Burke Hales
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - T Chris Mochon Collura
- Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA
| | | | - George G Waldbusser
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
3
|
Pacella SR, Brown CA, Kaldy JE, Labiosa RG, Hales B, Collura TCM, Waldbusser GG. Quantifying the combined impacts of anthropogenic CO 2 emissions and watershed alteration on estuary acidification at biologically-relevant time scales: a case study from Tillamook Bay, OR, USA. FRONTIERS IN MARINE SCIENCE 2024; 11:1293955. [PMID: 39391812 PMCID: PMC11462966 DOI: 10.3389/fmars.2024.1293955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The impacts of ocean acidification (OA) on coastal water quality have been subject to intensive research in the past decade, but how emissions-driven OA combines with human modifications of coastal river inputs to affect estuarine acidification dynamics is less well understood. This study presents a methodology for quantifying the synergistic water quality impacts of OA and riverine acidification on biologically-relevant timescales through a case study from a small, temperate estuary influenced by coastal upwelling and watershed development. We characterized the dynamics and drivers of carbonate chemistry in Tillamook Bay, OR (USA), along with its coastal ocean and riverine end-members, through a series of synoptic samplings and continuous water quality monitoring from July 2017 to July 2018. Synoptic river sampling showed acidification and increasedCO 2 content in areas with higher proportions of watershed anthropogenic land use. We propagated the impacts of 1). the observed riverine acidification, and 2). modeled OA changes to incoming coastal ocean waters across the full estuarine salinity spectrum and quantified changes in estuarine carbonate chemistry at a 15-minute temporal resolution. The largest magnitude of acidification (-1.4pH ⊤ units) was found in oligo- and mesohaline portions of the estuary due to the poor buffering characteristics of these waters, and was primarily driven by acidified riverine inputs. Despite this, emissions-driven OA is responsible for over 94% of anthropogenic carbon loading to Tillamook Bay and the dominant driver of acidification across most of the estuary due to its large tidal prism and relatively small river discharges. This dominance of ocean-sourced anthropogenic carbon challenges the efficacy of local management actions to ameliorate estuarine acidification impacts. Despite the relatively large acidification effects experienced in Tillamook Bay (-0.16 to -0.23 p H ⊤ units) as compared with typical open ocean change (approximately -0.1pH ⊤ units), observations of estuarinepH ⊤ would meet existing state standards forpH ⊤ . Our analytical framework addresses pressing needs for water quality assessment and coastal resilience strategies to differentiate the impacts of anthropogenic acidification from natural variability in dynamic estuarine systems.
Collapse
Affiliation(s)
- Stephen R. Pacella
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - Cheryl A. Brown
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - James E. Kaldy
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - Rochelle G. Labiosa
- Region 10, United States Environmental Protection Agency, Seattle, WA, United States
| | - Burke Hales
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - T Chris Mochon Collura
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - George G. Waldbusser
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Gelpi CG. Dynamics of pH at Santa Catalina Island. PLoS One 2023; 18:e0290039. [PMID: 38060498 PMCID: PMC10703214 DOI: 10.1371/journal.pone.0290039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 12/18/2023] Open
Abstract
The local expression of ocean acidification may depend on local oceanographic features in addition to global forcings. Our objective is to provide a baseline of pH behavior at Santa Catalina Island, situated within the unique oceanographic characteristics of the Southern California Bight, and to gain insight into ocean acidification at the island. Measurements of the upper water column (to 30-m depth) of pH, temperature, conductivity, chlorophyll and dissolved oxygen at Santa Catalina were made from a fixed mooring and by profiling the water column from a boat and on Self-Contained Underwater Breathing Apparatus (SCUBA). The average pH (8.095 at 18-m depth) was found to be higher than that reported off the nearby mainland and the Northern Channel Islands. The higher value is thought to result from both downwelling produced by internal waves as well as less upwelling at the island compared to other locations. Large modulations in pH at depth corresponded to advection of gradients by internal waves. Within the accuracy of the sensors there was no seasonal dependence detected at near-surface, nor a pH signal associated with the sub-surface chlorophyll and oxygen maxima. We conclude that marine life living at depths affected by internal waves experience significant variation in pH.
Collapse
Affiliation(s)
- Craig G. Gelpi
- Catalina Marine Society, Lomita, California, United States of America
| |
Collapse
|
5
|
Tomasetti SJ, Doall MH, Hallinan BD, Kraemer JR, Gobler CJ. Oyster reefs' control of carbonate chemistry-Implications for oyster reef restoration in estuaries subject to coastal ocean acidification. GLOBAL CHANGE BIOLOGY 2023; 29:6572-6590. [PMID: 37777480 DOI: 10.1111/gcb.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05-0.07 and 0.07-0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×-5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.
Collapse
Affiliation(s)
- Stephen J Tomasetti
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Michael H Doall
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Brendan D Hallinan
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Jeffrey R Kraemer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| |
Collapse
|
6
|
Xie J, Sun X, Li P, Zhou T, Jiang R, Wang X. The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). MARINE POLLUTION BULLETIN 2023; 190:114831. [PMID: 36944286 DOI: 10.1016/j.marpolbul.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.
Collapse
Affiliation(s)
- Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohan Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Rijin Jiang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Voet HEE, Vlaminck E, Van Colen C, Bodé S, Boeckx P, Degraer S, Moens T, Vanaverbeke J, Braeckman U. Organic matter processing in a [simulated] offshore wind farm ecosystem in current and future climate and aquaculture scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159285. [PMID: 36216074 DOI: 10.1016/j.scitotenv.2022.159285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of blue economy and human use of offshore space triggered the concept of co-location of marine activities and is causing diverse local pressures on the environment. These pressures add to, and interact with, global challenges such as ocean acidification and warming. This study investigates the combined pressures of climate change and the planned co-location of offshore wind farm (OWF) and aquaculture zones on the carbon flow through epifaunal communities inhabiting wind turbines in the North Sea. A 13C-labelled phytoplankton pulse-chase experiment was performed in mesocosms (4 m3) holding undisturbed hard-substrate (HS) communities, natural sediment with infauna, and mobile invertebrate predators. Carbon assimilation was quantified under current and predicted future-climate conditions (+3 °C and -0.3 pH units), as well as a future-climate co-use scenario with blue mussel (Mytilus edulis) aquaculture. Climate change induced an increase in macrofaunal carbon assimilation as well as an organic enrichment of underlying sediments. Dynamic (non-)trophic links between M. edulis and other HS epifauna resulted in shifts among the species contributing most to the phytoplankton-derived carbon flow across climate scenarios. Increased inter- and intraspecific resource competition in the presence of M. edulis aquaculture prevented a large increase in the total assimilation of phytoplankton by HS fauna. Lower individual carbon assimilation rates by both mussels and other epifauna suggest that if filter capacity by HS epifauna would approach renewal by advection/mixing, M. edulis individuals would likely grow to a smaller-than-desired commercial size. In the same scenario, benthic organic carbon mineralisation was significantly boosted due to increased organic matter deposition by the aquaculture set-up. Combining these results with in situ OWF abundance data confirmed M. edulis as the most impactful OWF AHS species in terms of (total) carbon assimilation as well as the described stress responses due to climate change and the addition of bivalve aquaculture.
Collapse
Affiliation(s)
- H E E Voet
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - E Vlaminck
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - C Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - S Bodé
- Isotope Bioscience laboratory - ISOFYS, Department of green Chemistry and Technology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - P Boeckx
- Isotope Bioscience laboratory - ISOFYS, Department of green Chemistry and Technology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - S Degraer
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - T Moens
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - J Vanaverbeke
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium.
| | - U Braeckman
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| |
Collapse
|
8
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
9
|
Ferraz MA, Kiyama AC, Primel EG, Barbosa SC, Castro ÍB, Choueri RB, Gallucci F. Does pH variation influence the toxicity of organic contaminants in estuarine sediments? Effects of Irgarol on nematode assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152944. [PMID: 35007601 DOI: 10.1016/j.scitotenv.2022.152944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.
Collapse
Affiliation(s)
- Mariana Aliceda Ferraz
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ana Carolina Kiyama
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil.
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Rua Maria Máximo 168, 11030-100 Santos, SP, Brazil
| |
Collapse
|
10
|
Voet HEE, Van Colen C, Vanaverbeke J. Climate change effects on the ecophysiology and ecological functioning of an offshore wind farm artificial hard substrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152194. [PMID: 34890680 DOI: 10.1016/j.scitotenv.2021.152194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In the effort towards a decarbonised future, the local effects of a proliferating offshore wind farm (OWF) industry add to and interact with the global effects of marine climate change. This study aimed to quantify potential ecophysiological effects of ocean warming and acidification and to estimate and compare the cumulative clearance potential of suspended food items by OWF epifauna under current and future climate conditions. To this end, this study combined ecophysiological responses to ocean warming and acidification of three dominant colonising species on OWF artificial hard substrates (the blue mussel Mytilus edulis, the tube-building amphipod Jassa herdmani and the plumose anemone Metridium senile). In general, mortality, respiration rate and clearance rate increased during 3- to 6-week experimental exposures across all three species, except for M. senile, who exhibited a lower clearance rate in the warmed treatments (+3 °C) and an insensitivity to lowered pH (-0.3 pH units) in terms of survival and respiration rate. Ocean warming and acidification affected growth antagonistically, with elevated temperature being beneficial for M. edulis and lowered pH being beneficial for M. senile. The seawater volume potentially cleared from suspended food particles by this AHS colonising community increased significantly, extending the affected distance around an OWF foundation by 9.2% in a future climate scenario. By using an experimental multi-stressor approach, this study thus demonstrates how ecophysiology underpins functional responses to climate change in these environments, highlighting for the first time the integrated, cascading potential effects of OWFs and climate change on the marine ecosystem.
Collapse
Affiliation(s)
- H E E Voet
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - C Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - J Vanaverbeke
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium.
| |
Collapse
|
11
|
Pusceddu FH, Guimarães MM, Lopes LO, Souza LS, Cortez FS, Pereira CDS, Choueri RB, Cesar A. Biological effects of the antihypertensive losartan under different ocean acidification scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118329. [PMID: 34634406 DOI: 10.1016/j.envpol.2021.118329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Since the last decade, several studies have reported the presence and effects of pharmaceutical residues in the marine environment, especially those of the antihypertensive class, such as losartan. However, there is little knowledge about the physiological effects of losartan in marine invertebrates regarding its behavior under possible coastal ocean acidification scenarios. The objective of this study was to evaluate biological effects on marine organisms at different levels of the biological organization caused by the compound losartan in water and sediment under coastal ocean acidification scenarios. Water and sediment samples were collected at five sites around the Santos Submarine Sewage outfall (SSO) and two sites around the Guarujá Submarine Sewage Outfall (GSO). Losartan was found in concentrations ranging from <LOD to 7.63 ng/L in water and from <LOQ to 3.10 ng/g in sediments. Statistical analysis showed interactive effects pH and losartan on the toxicity results. The water toxicity test with Echinometra lucunter embryos/larvae showed LOECs 50-100 mg/L, with values decreasing as the pH decreased. In the sediment assays, LOEC value for sea urchin embryo-larval development was 1.0 μg/g for all tested pHs. Regarding the lysosomal membrane stability assays with adult bivalves, a LOEC of 3000 ng/L was found for Perna perna in water exposure (both at pH 8.0 and 7.6). Effects for Mytella guyanensis were observed at environmentally relevant concentrations in sediment (LOEC = 3 ng/g at pH 8.0 and 7.6). This study demonstrated that coastal ocean acidification by itself causes effects on marine invertebrates, but can also increase the negative effects of losartan in waterborne exposure. There is a need to deepen the studies on the ecotoxicity of pharmaceutical residues and acidification of the marine environment.
Collapse
Affiliation(s)
- F H Pusceddu
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - M M Guimarães
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - L O Lopes
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - L S Souza
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - F S Cortez
- Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - C D S Pereira
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - R B Choueri
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil.
| | - A Cesar
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| |
Collapse
|
12
|
Rosenau NA, Galavotti H, Yates KK, Bohlen CC, Hunt CW, Liebman M, Brown CA, Pacella SR, Largier JL, Nielsen KJ, Hu X, McCutcheon MR, Vasslides JM, Poach M, Ford T, Johnston K, Steele A. Integrating High-Resolution Coastal Acidification Monitoring Data Across Seven United States Estuaries. FRONTIERS IN MARINE SCIENCE 2021; 19:1-679913. [PMID: 35693025 PMCID: PMC9179233 DOI: 10.3389/fmars.2021.679913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beginning in 2015, the United States Environmental Protection Agency's (EPA's) National Estuary Program (NEP) started a collaboration with partners in seven estuaries along the East Coast (Barnegat Bay; Casco Bay), West Coast (Santa Monica Bay; San Francisco Bay; Tillamook Bay), and the Gulf of Mexico (GOM) Coast (Tampa Bay; Mission-Aransas Estuary) of the United States to expand the use of autonomous monitoring of partial pressure of carbon dioxide (pCO2) and pH. Analysis of high-frequency (hourly to sub-hourly) coastal acidification data including pCO2, pH, temperature, salinity, and dissolved oxygen (DO) indicate that the sensors effectively captured key parameter measurements under challenging environmental conditions, allowing for an initial characterization of daily to seasonal trends in carbonate chemistry across a range of estuarine settings. Multi-year monitoring showed that across all water bodies temperature and pCO2 covaried, suggesting that pCO2 variability was governed, in part, by seasonal temperature changes with average pCO2 being lower in cooler, winter months and higher in warmer, summer months. Furthermore, the timing of seasonal shifts towards increasing (or decreasing) pCO2 varied by location and appears to be related to regional climate conditions. Specifically, pCO2 increases began earlier in the year in warmer water, lower latitude water bodies in the GOM (Tampa Bay; Mission-Aransas Estuary) as compared with cooler water, higher latitude water bodies in the northeast (Barnegat Bay; Casco Bay), and upwelling-influenced West Coast water bodies (Tillamook Bay; Santa Monica Bay; San Francisco Bay). Results suggest that both thermal and non-thermal influences are important drivers of pCO2 in Tampa Bay oxygen, National Estuary Program and Mission-Aransas Estuary. Conversely, non-thermal processes, most notably the biogeochemical structure of coastal upwelling, appear to be largely responsible for the observed pCO2 values in West Coast water bodies. The co-occurrence of high salinity, high pCO2, low DO, and low temperature water in Santa Monica Bay and San Francisco Bay characterize the coastal upwelling paradigm that is also evident in Tillamook Bay when upwelling dominates freshwater runoff and local processes. These data demonstrate that high-quality carbonate chemistry observations can be recorded from estuarine environments using autonomous sensors originally designed for open-ocean settings.
Collapse
Affiliation(s)
- Nicholas A. Rosenau
- Ocean and Coastal Management Branch, Office of Wetlands Oceans and Watersheds, United States Environmental Protection Agency, Washington, DC, United States
| | - Holly Galavotti
- Ocean and Coastal Management Branch, Office of Wetlands Oceans and Watersheds, United States Environmental Protection Agency, Washington, DC, United States
| | - Kimberly K. Yates
- United States Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, United States
| | - Curtis C. Bohlen
- Casco Bay Estuary Partnership, Cutler Institute, University of Southern Maine, Portland, ME, United States
| | - Christopher W. Hunt
- Ocean Process Analysis Laboratory, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, United States
| | - Matthew Liebman
- United States Environmental Protection Agency Region 1, Boston, MA, United States
| | - Cheryl A. Brown
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - Stephen R. Pacella
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - John L. Largier
- Coastal and Marine Sciences Institute, University of California, Davis, Bodega Bay, CA, United States
| | - Karina J. Nielsen
- Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA, United States
| | - Xinping Hu
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Melissa R. McCutcheon
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - James M. Vasslides
- Barnegat Bay Partnership, Ocean County College, Toms River, NJ, United States
| | - Matthew Poach
- NOAA Northeast Fisheries Science Center, Milford, CT, United States
| | - Tom Ford
- The Bay Foundation, Los Angeles, CA, United States
| | | | - Alex Steele
- Ocean Monitoring and Research Group, Los Angeles County Sanitation District (LACSD), Whittier, CA, United States
| |
Collapse
|
13
|
Gassett PR, O'Brien-Clayton K, Bastidas C, Rheuban JE, Hunt CW, Turner E, Liebman M, Silva E, Pimenta AR, Grear J, Motyka J, McCorkle D, Stancioff E, Brady DC, Strong AL. Community Science for Coastal Acidification Monitoring and Research. COASTAL MANAGEMENT : AN INTERNATIONAL JOURNAL OF MARINE ENVIRONMENT, RESOURCES, LAW, AND SOCIETY 2021; 49:510-531. [PMID: 36204115 PMCID: PMC9534045 DOI: 10.1080/08920753.2021.1947131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.
Collapse
Affiliation(s)
- Parker Randall Gassett
- Department of Marine Science, University of Maine, Orono, Maine, USA
- Maine Sea Grant, Orono, Maine, USA
| | - Katie O'Brien-Clayton
- Connecticut Department of Energy and Environmental Protection, Hartford, Connecticut, USA
| | - Carolina Bastidas
- MIT Sea Grant Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennie E Rheuban
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Woods Hole Sea Grant, Woods Hole, Massachusetts, USA
| | - Christopher W Hunt
- Ocean Process Analysis Laboratory, University of New Hampshire, Durham, New Hampshire, USA
| | | | | | - Emily Silva
- Northeastern Regional Association of Coastal Ocean Observing Systems, Portsmouth, New Hampshire, USA
| | - Adam R Pimenta
- Atlantic Coastal Environmental Sciences Division, Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Jason Grear
- Atlantic Coastal Environmental Sciences Division, Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Jackie Motyka
- Northeastern Regional Association of Coastal Ocean Observing Systems, Portsmouth, New Hampshire, USA
| | - Daniel McCorkle
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Esperanza Stancioff
- University of Maine Cooperative Extension and Maine Sea Grant, University of Maine, Orono, Maine, USA
| | - Damian C Brady
- School of Marine Science, University of Maine, Orono, Maine, USA
| | - Aaron L Strong
- Environmental Studies Program, Hamilton College, Clinton, New York, USA
| |
Collapse
|
14
|
Fu Z, Yang R, Yu G, Ma Z. Tissue comparison of transcriptional response to acute acidification stress of barramundi Lates calcarifer in coastal and estuarine areas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100830. [PMID: 33812155 DOI: 10.1016/j.cbd.2021.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
In order to explore the common and unique physiological changes in tissues of juvenile barramundi Lates calcarifer in acidified water environment, RNA sequence analysis was used to analyze the molecular responses of liver, head kidney, and gill of juvenile barramundi in pH 7.4 and pH 8.1 seawater environment. The number of differential expression genes identified in liver, head kidney and gill were 860, 388 and 1792, respectively. Through functional enrichment analysis, the differential expression genes common to the three tissues were all related to immunity. Among the unique differential genes in the liver, pathways related to digestion, endocrine, and metabolism were enriched. Among the unique differential expression genes in gill, pathways related to genetic information processing, immunity and metabolism were enriched. The findings of the present study uncover the transcriptional changes in fish correspond to environmental pH change, and provide a better understanding on the biological process at molecular level to environmental pH adapting. This work highlights that assessments for the potential of estuarine fishes to cope with environmental pH change to develop the future conservation strategies.
Collapse
Affiliation(s)
- Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| |
Collapse
|
15
|
Rheuban JE, Gassett PR, McCorkle DC, Hunt CW, Liebman M, Bastidas C, O’Brien-Clayton K, Pimenta AR, Silva E, Vlahos P, Woosley RJ, Ries J, Liberti CM, Grear J, Salisbury J, Brady DC, Guay K, LaVigne M, Strong AL, Stancioff E, Turner E. Synoptic assessment of coastal total alkalinity through community science. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:1-14. [PMID: 35069797 PMCID: PMC8780830 DOI: 10.1088/1748-9326/abcb39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Comprehensive sampling of the carbonate system in estuaries and coastal waters can be difficult and expensive because of the complex and heterogeneous nature of near-shore environments. We show that sample collection by community science programs is a viable strategy for expanding estuarine carbonate system monitoring and prioritizing regions for more targeted assessment. 'Shell Day' was a single-day regional water monitoring event coordinating coastal carbonate chemistry observations by 59 community science programs and seven research institutions in the northeastern United States, in which 410 total alkalinity (TA) samples from 86 stations were collected. Field replicates collected at both low and high tides had a mean standard deviation between replicates of 3.6 ± 0.3 μmol kg-1 (σ mean ± SE, n = 145) or 0.20 ± 0.02%. This level of precision demonstrates that with adequate protocols for sample collection, handling, storage, and analysis, community science programs are able to collect TA samples leading to high-quality analyses and data. Despite correlations between salinity, temperature, and TA observed at multiple spatial scales, empirical predictions of TA had relatively high root mean square error >48 μmol kg-1. Additionally, ten stations displayed tidal variability in TA that was not likely driven by low TA freshwater inputs. As such, TA cannot be predicted accurately from salinity using a single relationship across the northeastern US region, though predictions may be viable at more localized scales where consistent freshwater and seawater endmembers can be defined. There was a high degree of geographic heterogeneity in both mean and tidal variability in TA, and this single-day snapshot sampling identified three patterns driving variation in TA, with certain locations exhibiting increased risk of acidification. The success of Shell Day implies that similar community science based events could be conducted in other regions to not only expand understanding of the coastal carbonate system, but also provide a way to inventory monitoring assets, build partnerships with stakeholders, and expand education and outreach to a broader constituency.
Collapse
Affiliation(s)
- J E Rheuban
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA 02543, United States of America
- Woods Hole Oceanographic Institution, Woods Hole Sea Grant, Woods Hole, MA 02543, United States of America
| | - P R Gassett
- University of Maine, Orono, ME 04469, United States of America
- Maine Sea Grant, Orono, ME 04469, United States of America
- Equally contributing first author
| | - D C McCorkle
- Woods Hole Oceanographic Institution, Department of Geology and Geophysics, Woods Hole, MA 02543, United States of America
| | - C W Hunt
- University of New Hampshire, Durham, NH 03824, United States of America
| | - M Liebman
- US Environmental Protection Agency Region 1, Boston, MA 02109, United States of America
| | - C Bastidas
- MIT Sea Grant, Cambridge, MA 02139, United States of America
| | - K O’Brien-Clayton
- Connecticut Department of Energy and Environmental Protection, Hartford, CT 06106, United States of America
| | - A R Pimenta
- US Environmental Protection Agency, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America
| | - E Silva
- Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS), Portsmouth, NH 03801, United States of America
| | - P Vlahos
- University of Connecticut, Storrs, CT 06269, United States of America
| | - R J Woosley
- Massachusetts Institute of Technology, Center for Global Change Science, Cambridge, MA 02139, United States of America
| | - J Ries
- Northeastern University, Marine Science Center, Department of Marine & Environmental Science, Nahant, MA 01908, United States of America
| | - C M Liberti
- University of Maine, Orono, ME 04469, United States of America
| | - J Grear
- US Environmental Protection Agency, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America
| | - J Salisbury
- University of New Hampshire, Durham, NH 03824, United States of America
| | - D C Brady
- University of Maine, Orono, ME 04469, United States of America
| | - K Guay
- Bowdoin College, Department of Earth and Oceanographic Science, Brunswick, ME 04011, United States of America
| | - M LaVigne
- Bowdoin College, Department of Earth and Oceanographic Science, Brunswick, ME 04011, United States of America
| | - A L Strong
- Hamilton College, Environmental Studies Program, Clinton, NY 13323, United States of America
| | - E Stancioff
- Maine Sea Grant, Orono, ME 04469, United States of America
- University of Maine Cooperative Extension Office, Waldoboro, ME 04572, United States of America
| | - E Turner
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD 20910, United States of America, Retired
| |
Collapse
|
16
|
Sousa GT, Neto MCL, Choueri RB, Castro ÍB. Photoprotection and antioxidative metabolism in Ulva lactuca exposed to coastal oceanic acidification scenarios in the presence of Irgarol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105717. [PMID: 33307389 DOI: 10.1016/j.aquatox.2020.105717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic changes such as ocean acidification, eutrophication, and the release of hazardous chemicals affect coastal environments and aquatic organisms. We investigated the effects of seawater pH (7.4 and 8.2) isolated and in combination with Irgarol on Ulva lactuca. Stress indicators such as membrane damage, lipid peroxidation, and hydrogen peroxide content were assessed. In addition, chlorophyll fluorescence and antioxidant enzyme activities were measured. The photosynthetic yield was affected by low pH in assays with and without Irgarol. However, the combination of low pH and Irgarol promoted photoinhibition, besides the induction of non-photochemical quenching (NPQ) and changes in photosynthetic pigment contents. The induction of NPQ was directly influenced by low pH. The membrane damage was increased in low pH with and without Irgarol exposure. Total soluble protein and carbohydrate contents decreased in low pH, and in presence of Irgarol. The H2O2 content and lipid peroxidation were not affected by low pH. In contrast, Irgarol exposure strongly increased lipid peroxidation in both pHs, suggesting a possible synergistic effect. To avoid the harmful effects of high H2O2, U. lactuca increased antioxidant enzyme activities in treatments under low pH and in presence of Irgarol. Our results indicate that U. lactuca is tolerant to low pH by inducing NPQ, changing pigment contents, and increasing antioxidant defenses. In contrast, these protective mechanisms could not avoid the harmful effects of the combination with Irgarol.
Collapse
Affiliation(s)
- Gabriela Tavares Sousa
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil; Biosciences Institute, Coastal Campus, State University of São Paulo, Praça Infante Dom Henrique, s/n, São Vicente, SP, 11330-900, Brazil
| | - Milton C Lima Neto
- Biosciences Institute, Coastal Campus, State University of São Paulo, Praça Infante Dom Henrique, s/n, São Vicente, SP, 11330-900, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil.
| |
Collapse
|
17
|
Smith JN, Mongin M, Thompson A, Jonker MJ, De'ath G, Fabricius KE. Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. GLOBAL CHANGE BIOLOGY 2020; 26:2149-2160. [PMID: 32048410 DOI: 10.1111/gcb.14985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar ) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1-fold) and coral juvenile densities (1.3-fold), while non-calcifying macroalgae greatly increase (up to 3.2-fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5-3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.
Collapse
Affiliation(s)
- Joy N Smith
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | | - Angus Thompson
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | | - Glenn De'ath
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | |
Collapse
|
18
|
Simulated CO 2-induced ocean acidification for ocean in the East China: historical conditions since preindustrial time and future scenarios. Sci Rep 2019; 9:18559. [PMID: 31811165 PMCID: PMC6897940 DOI: 10.1038/s41598-019-54861-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Since preindustrial times, as atmospheric CO2 concentration increases, the ocean continuously absorbs anthropogenic CO2, reducing seawater pH and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−], which is termed ocean acidification. We perform Earth system model simulations to assess CO2-induced acidification for ocean in the East China, one of the most vulnerable areas to ocean acidification. By year 2017, ocean surface pH in the East China drops from the preindustrial level of 8.20 to 8.06, corresponding to a 35% rise in [H+], and reduction rate of pH becomes faster in the last two decades. Changes in surface seawater acidity largely result from CO2-induced changes in surface dissolved inorganic carbon (DIC), alkalinity (ALK), salinity and temperature, among which DIC plays the most important role. By year 2300, simulated reduction in sea surface \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−] is 13% under RCP2.6, contrasted to 72% under RCP8.5. Furthermore, simulated results show that CO2-induced warming acts to mitigate reductions in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−], but the individual effect of oceanic CO2 uptake is much greater than the effect of CO2-induced warming on ocean acidification. Our study quantifies ocean acidification induced by anthropogenic CO2, and indicates the potentially important role of accelerated CO2 emissions in projections of future changes in biogeochemistry and ecosystem of ocean in the East China.
Collapse
|
19
|
Qui-Minet ZN, Coudret J, Davoult D, Grall J, Mendez‐Sandin M, Cariou T, Martin S. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol Evol 2019; 9:13787-13807. [PMID: 31938482 PMCID: PMC6953553 DOI: 10.1002/ece3.5802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023] Open
Abstract
Made up of calcareous coralline algae, maerl beds play a major role as ecosystem engineers in coastal areas throughout the world. They undergo strong anthropogenic pressures, which may threaten their survival. The aim of this study was to gain insight into the future of maerl beds in the context of global and local changes. We examined the effects of rising temperatures (+3°C) and ocean acidification (-0.3 pH units) according to temperature and pH projections (i.e., the RCP 8.5 scenario), and nutrient (N and P) availability on three temperate maerl species (Lithothamnion corallioides, Phymatolithon calcareum, and Lithophyllum incrustans) in the laboratory in winter and summer conditions. Physiological rates of primary production, respiration, and calcification were measured on all three species in each treatment and season. The physiological response of maerl to global climate change was species-specific and influenced by seawater nutrient concentrations. Future temperature-pH scenario enhanced maximal gross primary production rates in P. calcareum in winter and in L. corallioides in both seasons. Nevertheless, both species suffered an impairment of light harvesting and photoprotective mechanisms in winter. Calcification rates at ambient light intensity were negatively affected by the future temperature-pH scenario in winter, with net dissolution observed in the dark in L. corallioides and P. calcareum under low nutrient concentrations. Nutrient enrichment avoided dissolution under future scenarios in winter and had a positive effect on L. incrustans calcification rate in the dark in summer. In winter conditions, maximal calcification rates were enhanced by the future temperature-pH scenario on the three species, but P. calcareum suffered inhibition at high irradiances. In summer conditions, the maximal calcification rate dropped in L. corallioides under the future global climate change scenario, with a potential negative impact on CaCO3 budget for maerl beds in the Bay of Brest where this species is dominant. Our results highlight how local changes in nutrient availability or irradiance levels impact the response of maerl species to global climate change and thus point out how it is important to consider other abiotic parameters in order to develop management policies capable to increase the resilience of maerl beds under the future global climate change scenario.
Collapse
Affiliation(s)
- Zujaila Nohemy Qui-Minet
- Sorbonne UniversitésCNRSUMR 7144 Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoffFrance
| | - Jérôme Coudret
- Sorbonne UniversitésCNRSUMR 7144 Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoffFrance
| | - Dominique Davoult
- Sorbonne UniversitésCNRSUMR 7144 Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoffFrance
| | - Jacques Grall
- Université de Bretagne OccidentaleIUEMPlouzanéFrance
| | - Miguel Mendez‐Sandin
- Sorbonne UniversitésCNRSUMR 7144 Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoffFrance
| | - Thierry Cariou
- Sorbonne UniversitésCNRS, FR2424Station Biologique de RoscoffRoscoffFrance
| | - Sophie Martin
- Sorbonne UniversitésCNRSUMR 7144 Adaptation et Diversité en Milieu MarinStation Biologique de RoscoffRoscoffFrance
| |
Collapse
|
20
|
Kapsenberg L, Cyronak T. Ocean acidification refugia in variable environments. GLOBAL CHANGE BIOLOGY 2019; 25:3201-3214. [PMID: 31199553 PMCID: PMC6851593 DOI: 10.1111/gcb.14730] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/05/2019] [Indexed: 05/04/2023]
Abstract
Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2 ) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.
Collapse
Affiliation(s)
- Lydia Kapsenberg
- Department of Marine Biology and OceanographyCSIC Institute of Marine SciencesBarcelonaSpain
| | - Tyler Cyronak
- Department of Marine and Environmental SciencesHalmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFlorida
| |
Collapse
|
21
|
Conradi M, Sánchez-Moyano JE, Bhuiyan MKA, Rodríguez-Romero A, Galotti A, Basallote MD, DelValls A, Parra G, Riba I. Intraspecific variation in the response of the estuarine European isopod Cyathura carinata (Krøyer, 1847) to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:134-145. [PMID: 31129324 DOI: 10.1016/j.scitotenv.2019.05.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
In the present study the model isopod, Cyathura carinata were exposed to four pHNIST treatments (control: 7.9; 7.5, 7, 6.5) in order to determine the tolerance and pH threshold value this estuarine species withstand under future acidification scenarios. Seawater acidification significantly affected the lifespan of C. carinata, where population density was remarkably reduced at the lowest pH treatment. The longevity, survivorship and swimming activity (related to the acquisition of energy) of these isopods decreased with decreasing pH. Furthermore, to determine the possible metabolic plasticity of this species, the swimming activity, the Na+/K + -ATPase activity (relevant for osmoregulation process), and the RNA:DNA ratio (an indicator of fitness) were measure from two populations of C. carinata, one inhabiting a stable environment (pHNIST 7.5-8.0) and one inhabiting a fluctuating pCO2 regimes (pH 3.3-8.5) subjected to three pH treatments (7.9, 7.0 and 6.5). The population from high fluctuating pCO2 conditions showed capacity to withstand to pH 6.5, as well as higher longevity and metabolic plasticity, when compared with the population from the habitat with slight pCO2 variation. These results indicate that Cyathura population from stable environments could be vulnerable to ocean acidification because it could trigger detrimental effects on its survival energy budget, and growth. However, ocean acidification has limited effect on the energy budget and survival of C. carinata population from highly variable habitats, suggesting that they are able to cope with the elevated energy demand. The difference showed between populations is likely an indication of genetic differentiation in tolerance to ocean acidification, possibly attributable to local adaptations, which could provide the raw material necessary for adaptation to future conditions. In addition, our results suggest that when assessing marine crustacean responses to changing environments on a global scale, variability in population and metabolic responses need to be considered.
Collapse
Affiliation(s)
- M Conradi
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av Reina Mercedes s/n, 41012 Sevilla. Spain.
| | - J E Sánchez-Moyano
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av Reina Mercedes s/n, 41012 Sevilla. Spain
| | - M K A Bhuiyan
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - A Rodríguez-Romero
- Green Engineering Resources Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos (ETSIIT), Universidad de Cantabria, Cantabria, Spain
| | - A Galotti
- Departamento de Biología Animal, Vegetal y Ecología, Centro de Estudios Avanzados en Ciencias de la Tierra, Universidad de Jaén, Jaén, Spain
| | - M D Basallote
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment, Faculty of Experimental Sciences, Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - A DelValls
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - G Parra
- Departamento de Biología Animal, Vegetal y Ecología, Centro de Estudios Avanzados en Ciencias de la Tierra, Universidad de Jaén, Jaén, Spain
| | - I Riba
- UNESCO UNITWIN/UNICOP, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, PG Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
22
|
Duffy PB, Field CB, Diffenbaugh NS, Doney SC, Dutton Z, Goodman S, Heinzerling L, Hsiang S, Lobell DB, Mickley LJ, Myers S, Natali SM, Parmesan C, Tierney S, Williams AP. Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science 2018; 363:science.aat5982. [DOI: 10.1126/science.aat5982] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
Abstract
We assess scientific evidence that has emerged since the U.S. Environmental Protection Agency’s 2009 Endangerment Finding for six well-mixed greenhouse gases and find that this new evidence lends increased support to the conclusion that these gases pose a danger to public health and welfare. Newly available evidence about a wide range of observed and projected impacts strengthens the association between the risk of some of these impacts and anthropogenic climate change, indicates that some impacts or combinations of impacts have the potential to be more severe than previously understood, and identifies substantial risk of additional impacts through processes and pathways not considered in the Endangerment Finding.
Collapse
|
23
|
Koweek DA, Zimmerman RC, Hewett KM, Gaylord B, Giddings SN, Nickols KJ, Ruesink JL, Stachowicz JJ, Takeshita Y, Caldeira K. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1694-1714. [PMID: 30063809 DOI: 10.1002/eap.1771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global-scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to better understand the potential for a temperate seagrass meadow to locally mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales Bay, an inlet on the coast of California, USA which supports a major oyster farming industry. We conducted a series of month-long model simulations to characterize processes that occur during summer and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the pH of the primary source waters into the meadow, although we did find occasional periods (hours) when seagrass metabolism may modify the pH by up to ±0.2 units. Tidal phasing relative to the diel cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering occurs during periods of the year with midday low tides. Our model results suggest that seagrass metabolism in Tomales Bay would not provide long-term ocean acidification mitigation. However, we emphasize that our model results may not hold in meadows where assumptions about depth-averaged net production and seawater residence time within the seagrass meadow differ from our model assumptions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and services that will be increasingly important as humans increasingly affect coastal ecosystems.
Collapse
Affiliation(s)
- David A Koweek
- Department of Global Ecology, Carnegie Insitution for Science, 260 Panama Street, Stanford, California, 94305, USA
| | - Richard C Zimmerman
- Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, 4600 Elkhorn Avenue, Norfolk, Virginia, 23529, USA
| | - Kathryn M Hewett
- Bodega Marine Laboratory, University of California Davis, 2099 Westshore Road, Bodega Bay, California, 94923, USA
| | - Brian Gaylord
- Bodega Marine Laboratory, University of California Davis, 2099 Westshore Road, Bodega Bay, California, 94923, USA
| | - Sarah N Giddings
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive 0206, La Jolla, California, 92093, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, California, 91330, USA
| | - Jennifer L Ruesink
- Department of Biology, University of Washington, Box 351800, Seattle, Washington, 98195, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California Davis, Davis, California, 95616, USA
| | - Yuichiro Takeshita
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, 95039, USA
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Insitution for Science, 260 Panama Street, Stanford, California, 94305, USA
| |
Collapse
|
24
|
Seagrass habitat metabolism increases short-term extremes and long-term offset of CO 2 under future ocean acidification. Proc Natl Acad Sci U S A 2018; 115:3870-3875. [PMID: 29610330 DOI: 10.1073/pnas.1703445115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.
Collapse
|
25
|
Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci Rep 2017; 7:2526. [PMID: 28566727 PMCID: PMC5451383 DOI: 10.1038/s41598-017-02777-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/19/2017] [Indexed: 11/08/2022] Open
Abstract
The near-term progression of ocean acidification (OA) is projected to bring about sharp changes in the chemistry of coastal upwelling ecosystems. The distribution of OA exposure across these early-impact systems, however, is highly uncertain and limits our understanding of whether and how spatial management actions can be deployed to ameliorate future impacts. Through a novel coastal OA observing network, we have uncovered a remarkably persistent spatial mosaic in the penetration of acidified waters into ecologically-important nearshore habitats across 1,000 km of the California Current Large Marine Ecosystem. In the most severe exposure hotspots, suboptimal conditions for calcifying organisms encompassed up to 56% of the summer season, and were accompanied by some of the lowest and most variable pH environments known for the surface ocean. Persistent refuge areas were also found, highlighting new opportunities for local adaptation to address the global challenge of OA in productive coastal systems.
Collapse
|
26
|
Ekstrom JA, Crona BI. Institutional misfit and environmental change: A systems approach to address ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:599-608. [PMID: 27810748 DOI: 10.1016/j.scitotenv.2016.10.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/11/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Emerging environmental threats often lack sufficient governance to address the full extent of the problem. An example is ocean acidification which is a growing concern in fishing and aquaculture economies worldwide, but has remained a footnote in environmental policy at all governance levels. However, existing legal jurisdictions do account for some aspects of the system relating to ocean acidification and these may be leveraged to support adapting to and mitigating ocean acidification. We refine and apply a methodological framework that helps objectively evaluate governance, from a social-ecological systems perspective. We assess how well a set of extant US institutions fits with the social-ecological interactions pertinent to ocean acidification. The assessment points to measured legal gaps, for which we evaluate the government authorities most appropriate to help fill these gaps. The analysis is conducted on United State federal statutes and regulations. Results show quantitative improvement of institutional fit over time (2006 to 2013), but a substantial number of measured legal gaps persist especially around acknowledging local sources of acidification and adaptation strategies to deal with or avoid impacts. We demonstrate the utility of this framework to evaluate the governance surrounding any emerging environmental threat as a first step to guiding the development of jurisdictionally realistic solutions.
Collapse
Affiliation(s)
- Julia A Ekstrom
- Natural Resources Defense Council, 111 Sutter St. Flr 20, San Francisco, CA 94104, USA; University of California, Santa Barbara, CA, USA.
| | - Beatrice I Crona
- Stockholm Resilience Centre, Stockholm University, Sweden; Global Economic Dynamics and the Biosphere, The Royal Swedish Academy of Sciences, Sweden.
| |
Collapse
|
27
|
Albright R, Anthony KRN, Baird M, Beeden R, Byrne M, Collier C, Dove S, Fabricius K, Hoegh-Guldberg O, Kelly RP, Lough J, Mongin M, Munday PL, Pears RJ, Russell BD, Tilbrook B, Abal E. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:641-650. [PMID: 27564868 DOI: 10.1016/j.jenvman.2016.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 05/20/2023]
Abstract
Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.
Collapse
Affiliation(s)
- Rebecca Albright
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Carnegie Institution for Science, Department of Global Ecology, Stanford, CA, USA.
| | | | - Mark Baird
- Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere Flagship, Hobart, Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, Queensland 4810, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Australia
| | - Catherine Collier
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4870, Australia
| | - Sophie Dove
- Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ove Hoegh-Guldberg
- Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA 98105, USA
| | - Janice Lough
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Mathieu Mongin
- Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere Flagship, Hobart, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Rachel J Pears
- Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, Queensland 4810, Australia
| | - Bayden D Russell
- Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bronte Tilbrook
- Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere Flagship, Hobart, Australia
| | - Eva Abal
- University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
28
|
Borrero-Santiago AR, DelValls TA, Riba I. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:157-163. [PMID: 27107627 DOI: 10.1016/j.ecoenv.2016.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks.
Collapse
Affiliation(s)
- A R Borrero-Santiago
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain.
| | - T A DelValls
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - I Riba
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
29
|
Koweek DA, Mucciarone DA, Dunbar RB. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3790-7. [PMID: 26988138 DOI: 10.1021/acs.est.5b04733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.
Collapse
Affiliation(s)
- David A Koweek
- Department of Earth System Science, Stanford University , Stanford, California 94305, United States
| | - David A Mucciarone
- Department of Earth System Science, Stanford University , Stanford, California 94305, United States
| | - Robert B Dunbar
- Department of Earth System Science, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
30
|
Mongin M, Baird ME, Tilbrook B, Matear RJ, Lenton A, Herzfeld M, Wild-Allen K, Skerratt J, Margvelashvili N, Robson BJ, Duarte CM, Gustafsson MSM, Ralph PJ, Steven ADL. The exposure of the Great Barrier Reef to ocean acidification. Nat Commun 2016; 7:10732. [PMID: 26907171 PMCID: PMC4766391 DOI: 10.1038/ncomms10732] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/14/2016] [Indexed: 01/21/2023] Open
Abstract
The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.
Collapse
Affiliation(s)
- Mathieu Mongin
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | - Mark E. Baird
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | - Bronte Tilbrook
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
- Antarctic Climate and Ecosystems Co-operative Research Centre, Hobart, Tasmania 7000, Australia
| | | | - Andrew Lenton
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | - Mike Herzfeld
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Jenny Skerratt
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Barbara J. Robson
- CSIRO Land and Water, Canberra, Australian Capital Territory 2601, Australia
| | - Carlos M. Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuval 23955-6900, Kingdom of Saudi Arabia
| | - Malin S. M. Gustafsson
- Plant Functional Biology and Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | |
Collapse
|
31
|
Rodríguez-Romero A, Jarrold MD, Massamba-N'Siala G, Spicer JI, Calosi P. Multi-generational responses of a marine polychaete to a rapid change in seawater pCO 2. Evol Appl 2015; 9:1082-1095. [PMID: 27695517 PMCID: PMC5039322 DOI: 10.1111/eva.12344] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023] Open
Abstract
Little is known of the capacity that marine metazoans have to evolve under rapid p CO 2 changes. Consequently, we reared a marine polychaete, Ophryotrocha labronica, previously cultured for approximately 33 generations under a low/variable pH regime, under elevated and low p CO 2 for six generations. The strain used was found to be tolerant to elevated p CO 2 conditions. In generations F1 and F2 females' fecundity was significantly lower in the low p CO 2 treatment. However, from generation F3 onwards there were no differences between p CO 2 treatments, indicating that trans-generational effects enabled the restoration and maintenance of reproductive output. Whilst the initial fitness recovery was likely driven by trans-generational plasticity (TGP), the results from reciprocal transplant assays, performed using F7 individuals, made it difficult to disentangle between whether TGP had persisted across multiple generations, or if evolutionary adaptation had occurred. Nonetheless, both are important mechanisms for persistence under climate change. Overall, our study highlights the importance of multi-generational experiments in more accurately determining marine metazoans' responses to changes in p CO 2, and strengthens the case for exploring their use in conservation, by creating specific p CO 2 tolerant strains of keystone ecosystem species.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Ecología y Gestión Costera Instituto de Ciencias Marinas de Andalucía (CSIC) Puerto Real Cádiz Spain
| | - Michael D Jarrold
- Marine Biology and Ecology Research Centre School of Marine Science and Engineering Plymouth University Plymouth Devon UK; College of Marine and Environmental Sciences James Cook University Townsville Qld Australia
| | - Gloria Massamba-N'Siala
- Dipartimento di Scienze della Vita Università di Modena e Reggio Emilia ModenaItaly; Département de Biologie Chimie et Géographie Université du Québec à Rimouski
Rimouski QC Canada
| | - John I Spicer
- Marine Biology and Ecology Research Centre School of Marine Science and Engineering Plymouth University Plymouth Devon UK
| | - Piero Calosi
- Marine Biology and Ecology Research Centre School of Marine Science and Engineering Plymouth University Plymouth Devon UK; Département de Biologie Chimie et Géographie Université du Québec à Rimouski Rimouski QC Canada
| |
Collapse
|
32
|
Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science 2015; 349:aac4722. [PMID: 26138982 DOI: 10.1126/science.aac4722] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.
Collapse
Affiliation(s)
- J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, CNRS-Institut National des Sciences de l'Univers, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France.
| | - A Magnan
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - R Billé
- Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia
| | - W W L Cheung
- Nippon Foundation-UBC Nereus Program, University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada
| | - E L Howes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - F Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000 Monaco, Principality of Monaco. Institut Pierre Simon Laplace/Laboratoire des Science du Climat et de l'Environnement, UMR8212, CNRS-Commissariat à l'Énergie Atomique et aux Énergies Alternatives-Université de Versailles Saint-Quentin-en-Yvelines, Gif sur Yvette, France
| | - L Bopp
- Ocean Conservancy, 1300 19th Street NW, 8th Floor, Washington, DC 20036, USA
| | - S R Cooley
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - C M Eakin
- Global Change Institute and Australian Research Council Centre for Excellence in Coral Reef Studies, University of Queensland, Building 20, St Lucia, 4072 Queensland, Australia
| | - O Hoegh-Guldberg
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - R P Kelly
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - H-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - A D Rogers
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh EH12 7AT, Scotland
| | - J M Baxter
- IUCN, Rue Mauverney 28, CH-1196 Gland, Switzerland
| | - D Laffoley
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - D Osborn
- Program on Science, Technology, and Society, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138, USA
| | - A Rankovic
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. Fisheries Economics Research Unit, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J Rochette
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - U R Sumaila
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - S Treyer
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - C Turley
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| |
Collapse
|