1
|
Grefenstette N, Chou L, Colón-Santos S, Fisher TM, Mierzejewski V, Nural C, Sinhadc P, Vidaurri M, Vincent L, Weng MM. Chapter 9: Life as We Don't Know It. ASTROBIOLOGY 2024; 24:S186-S201. [PMID: 38498819 DOI: 10.1089/ast.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
While Earth contains the only known example of life in the universe, it is possible that life elsewhere is fundamentally different from what we are familiar with. There is an increased recognition in the astrobiology community that the search for life should steer away from terran-specific biosignatures to those that are more inclusive to all life-forms. To start exploring the space of possibilities that life could occupy, we can try to dissociate life from the chemistry that composes it on Earth by envisioning how different life elsewhere could be in composition, lifestyle, medium, and form, and by exploring how the general principles that govern living systems on Earth might be found in different forms and environments across the Solar System. Exotic life-forms could exist on Mars or Venus, or icy moons like Europa and Enceladus, or even as a shadow biosphere on Earth. New perspectives on agnostic biosignature detection have also begun to emerge, allowing for a broader and more inclusive approach to seeking exotic life with unknown chemistry that is distinct from life as we know it on Earth.
Collapse
Affiliation(s)
- Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | | | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | | | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Monica Vidaurri
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Howard University, DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | | |
Collapse
|
2
|
Baum DA, Peng Z, Dolson E, Smith E, Plum AM, Gagrani P. The ecology-evolution continuum and the origin of life. J R Soc Interface 2023; 20:20230346. [PMID: 37907091 PMCID: PMC10618062 DOI: 10.1098/rsif.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.
Collapse
Affiliation(s)
- David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Zhen Peng
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
| | - Emily Dolson
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Smith
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Alex M. Plum
- Department of Physics, University of California, San Diego, CA 92093, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
3
|
Ishida T. Emergence Simulation of Biological Cell-like Shapes Satisfying the Conditions of Life Using a Lattice-Type Multiset Chemical Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101580. [PMID: 36295015 PMCID: PMC9605168 DOI: 10.3390/life12101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary One of the great challenges in science is determining when, where, why, and how life first arose as well as the form taken by this life. In the present study, life was assumed to be (1) bounded, (2) replicating, (3) able to inherit information, and (4) able to metabolize energy. The various existing hypotheses provide little explanation of how these four conditions for life were established. Indeed, “how” a chemical process that simultaneously satisfies all four conditions emerged after the materials for life were in place is not always clear. In this study, a multiset chemical lattice model, which allows for virtual molecules of multiple types to be placed in each cell on a two-dimensional space, was considered. Using only the processes of molecular diffusion, reaction, and polymerization and modeling the chemical reactions of 15 types of molecules and 2 types of polymerized molecules, as well as using the morphogenesis rule of the Turing model, the process of emergence of a cell-like form with all three conditions except evolution ability was modeled and demonstrated. Abstract Although numerous reports using methods such as molecular dynamics, cellular automata, and artificial chemistry have clarified the process connecting non-life and life on protocell simulations, none of the models could simultaneously explain the emergence of cell shape, continuous self-replication, and replication control solely from molecular reactions and diffusion. Herein, we developed a model to generate all three conditions, except evolution ability, from hypothetical chains of chemical and molecular polymerization reactions. The present model considers a 2D lattice cell space, where virtual molecules are placed in each cell, and molecular reactions in each cell are based on a multiset rewriting rule, indicating stochastic transition of molecular species. The reaction paths of virtual molecules were implemented by replacing the rules of cellular automata that generate Turing patterns with molecular reactions. The emergence of a cell-like form with all three conditions except evolution ability was modeled and demonstrated using only molecular diffusion, reaction, and polymerization for modeling the chemical reactions of 15 types of molecules and 2 types of polymerized molecules. Furthermore, controlling self-replication is possible by changing the initial arrangement of a specific molecule. In summary, the present model is capable of investigating and refining existing hypotheses on the emergence of life.
Collapse
Affiliation(s)
- Takeshi Ishida
- Department of Ocean Mechanical Engineering, National Fisheries University, Shimonoseki 759-6595, Japan
| |
Collapse
|
4
|
The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021; 89:427-447. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The coming of the Last Universal Cellular Ancestor (LUCA) was the singular watershed event in the making of the biotic world. If the coming of LUCA marked the crossing of the "Darwinian Threshold", then pre-LUCA evolution must have been Pre-Darwinian and at least partly non-Darwinian. But how did Pre-Darwinian evolution before LUCA actually operate? I broaden our understanding of the central mechanism of biological evolution (i.e., variation-selection-inheritance) and then extend this broadened understanding to its natural starting point: the origin(s) of the First Universal Cellular Ancestors (FUCAs) before LUCA. My hypothesis centers upon vesicles' making-and-remaking as variation and competition as selection. More specifically, I argue that vesicles' acquisition and merger, via breaking-and-repacking, proto-endocytosis, proto-endosymbiosis, and other similar processes had been a central force of both variation and selection in the pre-Darwinian epoch. These new perspectives shed important new light upon the origin of FUCAs and their subsequent evolution into LUCA.
Collapse
|
5
|
Colombet J, Fuster M, Billard H, Sime-Ngando T. Femtoplankton: What's New? Viruses 2020; 12:E881. [PMID: 32806713 PMCID: PMC7472349 DOI: 10.3390/v12080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010-2020) of high abundances of biomimetic mineral-organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.F.); (H.B.); (T.S.-N.)
| | | | | | | |
Collapse
|
6
|
Vincent L, Berg M, Krismer M, Saghafi SS, Cosby J, Sankari T, Vetsigian K, Ii HJC, Baum DA. Chemical Ecosystem Selection on Mineral Surfaces Reveals Long-Term Dynamics Consistent with the Spontaneous Emergence of Mutual Catalysis. Life (Basel) 2019; 9:life9040080. [PMID: 31652727 PMCID: PMC6911371 DOI: 10.3390/life9040080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022] Open
Abstract
How did chemicals first become organized into systems capable of self-propagation and adaptive evolution? One possibility is that the first evolvers were chemical ecosystems localized on mineral surfaces and composed of sets of molecular species that could catalyze each other’s formation. We used a bottom-up experimental framework, chemical ecosystem selection (CES), to evaluate this perspective and search for surface-associated and mutually catalytic chemical systems based on the changes in chemistry that they are expected to induce. Here, we report the results of preliminary CES experiments conducted using a synthetic “prebiotic soup” and pyrite grains, which yielded dynamical patterns that are suggestive of the emergence of mutual catalysis. While more research is needed to better understand the specific patterns observed here and determine whether they are reflective of self-propagation, these results illustrate the potential power of CES to test competing hypotheses for the emergence of protobiological chemical systems.
Collapse
Affiliation(s)
- Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Michael Berg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Mitchell Krismer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Samuel S Saghafi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Jacob Cosby
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Talia Sankari
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Kalin Vetsigian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - H James Cleaves Ii
- Geophysical Laboratory, The Carnegie Institution for Science, Washington, DC 20015, USA.
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Blue Marble Space Institute for Science, Seattle, WA 97154, USA.
- Institute for Advanced Study, Princeton, NJ 08540, USA.
| | - David A Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc Natl Acad Sci U S A 2019; 116:5387-5392. [PMID: 30842280 PMCID: PMC6431231 DOI: 10.1073/pnas.1813987116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs "primordial soups" toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery.
Collapse
|
8
|
Baum DA. The origin and early evolution of life in chemical composition space. J Theor Biol 2018; 456:295-304. [PMID: 30110611 DOI: 10.1016/j.jtbi.2018.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/02/2023]
Abstract
Life can be viewed as a localized chemical system that sits in the basin of attraction of a metastable dynamical attractor state that remains out of equilibrium with the environment. To explore the implications of this conception, I introduce an abstract coordinate system, chemical composition (CC Space), which summarizes the degree to which chemical systems are out of equilibrium with the bulk environment. A system's chemical disequilibrium (CD) is defined to be proportional to the Euclidean distance between the composition of a small region of physical space, a pixel, and the origin of CC space. Such a model implies that new living states arise through chance changes in local chemical concentration ("mutations") that cause chemical systems to move in CC space and enter the basin of attraction of a life state. The attractor of a life state comprises an autocatalytic set of chemicals whose essential ("keystone") species are produced at a higher rate than they are lost to the environment by diffusion, such that spatial growth of the life state is expected. This framework suggests that new life states are most likely to form at the interface between different physical phases, where the rate of diffusion of keystone species is tied to the low-diffusion regime, whereas food and waste products are subject to the more diffusive regime. Once life nucleates, for example on a mineral surface, it will tend to grow and generate variants as a result of additional mutations that find alternative life states. By jumping from life state to life state, systems can eventually occupy areas of CC space that are too far out of equilibrium with the environment to ever arise in a single mutational step. Furthermore, I propose that variation in the capacity of different surface associated life states to persist and compete may systematically favor states that have higher chemical disequilibrium. The model also suggests a simple and predictable path from surface-associated life to cell-like individuation. This dynamical systems theoretical framework provides an integrated view of the origin and early evolution of life and supports novel empirical approaches.
Collapse
Affiliation(s)
- David A Baum
- Department of Botany and the Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Life's Late Digital Revolution and Why It Matters for the Study of the Origins of Life. Life (Basel) 2017; 7:life7030034. [PMID: 28841166 PMCID: PMC5617959 DOI: 10.3390/life7030034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022] Open
Abstract
The information contained in life exists in two forms, analog and digital. Analog information is manifest mainly in the differing concentrations of chemicals that get passed from generation to generation and can vary from cell to cell. Digital information is encoded in linear polymers such as DNA and RNA, whose side chains come in discrete chemical forms. Here, we argue that the analog form of information preceded the digital. Acceptance of this dichotomy, and this progression, can help direct future studies on how life originated and initially complexified on the primordial Earth, as well as expected trajectories for other, independent origins of complex life.
Collapse
|
10
|
Baum DA, Vetsigian K. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory. ORIGINS LIFE EVOL B 2016; 47:481-497. [PMID: 27864699 PMCID: PMC5705744 DOI: 10.1007/s11084-016-9526-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
Abstract
Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.
Collapse
Affiliation(s)
- David A Baum
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI, 53706, USA. .,Wisconsin Institute for Discovery, University of Wisconsin, 330 N. Orchard Street, Madison, WI, 53706, USA.
| | - Kalin Vetsigian
- Wisconsin Institute for Discovery, University of Wisconsin, 330 N. Orchard Street, Madison, WI, 53706, USA.,Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|