2
|
Rinchai D, Deola S, Zoppoli G, Kabeer BSA, Taleb S, Pavlovski I, Maacha S, Gentilcore G, Toufiq M, Mathew L, Liu L, Vempalli FR, Mubarak G, Lorenz S, Sivieri I, Cirmena G, Dentone C, Cuccarolo P, Giacobbe DR, Baldi F, Garbarino A, Cigolini B, Cremonesi P, Bedognetti M, Ballestrero A, Bassetti M, Hejblum BP, Augustine T, Van Panhuys N, Thiebaut R, Branco R, Chew T, Shojaei M, Short K, Feng CG, Zughaier SM, De Maria A, Tang B, Ait Hssain A, Bedognetti D, Grivel JC, Chaussabel D. High-temporal resolution profiling reveals distinct immune trajectories following the first and second doses of COVID-19 mRNA vaccines. SCIENCE ADVANCES 2022; 8:eabp9961. [PMID: 36367935 PMCID: PMC9651857 DOI: 10.1126/sciadv.abp9961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Knowledge of the mechanisms underpinning the development of protective immunity conferred by mRNA vaccines is fragmentary. Here, we investigated responses to coronavirus disease 2019 (COVID-19) mRNA vaccination via high-temporal resolution blood transcriptome profiling. The first vaccine dose elicited modest interferon and adaptive immune responses, which peaked on days 2 and 5, respectively. The second vaccine dose, in contrast, elicited sharp day 1 interferon, inflammation, and erythroid cell responses, followed by a day 5 plasmablast response. Both post-first and post-second dose interferon signatures were associated with the subsequent development of antibody responses. Yet, we observed distinct interferon response patterns after each of the doses that may reflect quantitative or qualitative differences in interferon induction. Distinct interferon response phenotypes were also observed in patients with COVID-19 and were associated with severity and differences in duration of intensive care. Together, this study also highlights the benefits of adopting high-frequency sampling protocols in profiling vaccine-elicited immune responses.
Collapse
Affiliation(s)
- Darawan Rinchai
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sara Deola
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Sara Taleb
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Igor Pavlovski
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Selma Maacha
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | | | - Lisa Mathew
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Li Liu
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Ghada Mubarak
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Stephan Lorenz
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Irene Sivieri
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
- Department of Experimental and Clinical Medicine, School of Internal Medicine, University of Florence, Florence, Italy
| | | | | | - Paola Cuccarolo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Federico Baldi
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Alberto Garbarino
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Benedetta Cigolini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Boris P. Hejblum
- Univ. Bordeaux, Department of Public Health, Inserm U1219 Bordeaux Population Health Research Centre, Inria SISTM, F-33000 Bordeaux, France
| | | | | | - Rodolphe Thiebaut
- Univ. Bordeaux, Department of Public Health, Inserm U1219 Bordeaux Population Health Research Centre, Inria SISTM, F-33000 Bordeaux, France
| | - Ricardo Branco
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Tracey Chew
- Sydney Informatic Hub, The University of Sydney, Sydney, New South Wales, Australia
| | - Maryam Shojaei
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Medicine, Sydney Medical School, Nepean Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirsty Short
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Carl G. Feng
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - PREDICT-19 Consortium
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
- Department of Experimental and Clinical Medicine, School of Internal Medicine, University of Florence, Florence, Italy
- Emergency Department, E.O. Ospedali Galliera, Genova, Italy
- Azienda Sanitaria Locale 3 Genovese, Genova, Liguria, Italy
- Univ. Bordeaux, Department of Public Health, Inserm U1219 Bordeaux Population Health Research Centre, Inria SISTM, F-33000 Bordeaux, France
- Sydney Informatic Hub, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Medicine, Sydney Medical School, Nepean Hospital, The University of Sydney, Sydney, New South Wales, Australia
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Medical Intensive Care Unit, Hamad General Hospital, PO BOX 3050, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, USA
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Andrea De Maria
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Benjamin Tang
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad General Hospital, PO BOX 3050, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | - Davide Bedognetti
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Damien Chaussabel
- Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, USA
| |
Collapse
|
8
|
Liao SY, Linderholm AL, Yoneda KY, Kenyon NJ, Harper RW. Airway transcriptomic profiling after bronchial thermoplasty. ERJ Open Res 2019; 5:00123-2018. [PMID: 30792984 PMCID: PMC6378341 DOI: 10.1183/23120541.00123-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bronchial thermoplasty is a nonpharmacological, device-based treatment option for a specific population of severe asthmatic subjects, but the underlying mechanisms are largely unknown. The purpose of this study is to identify potential altered pathways by bronchial thermoplasty using a transcriptomic approach. METHODS Patients undergoing bronchial thermoplasty were recruited to the study, and a bronchial brushing sample was obtained before each bronchial thermoplasty session and sent for RNA sequencing. A variance component score test was performed to identify those genes whose expression varied after bronchial thermoplasty sessions. Differential gene expression meta-analysis of severe asthmatic subjects versus controls was performed using public repositories. Overlapping genes were included for downstream pathway and network analyses. RESULTS 12 patients were enrolled in our study. A total of 133 severe asthma cases and 107 healthy controls from the public repositories were included in the meta-analysis. Comparison of differentially expressed genes from our study patients with the public repositories identified eight overlapping genes: AMIGO2, CBX7, NR3C2, SETBP1, SHANK2, SNTB1, STXBP1 and ZNF853. Network analysis of these overlapping genes identified pathways associated with neurophysiological processes. CONCLUSION We have shown that bronchial thermoplasty treatment alters several gene networks that are important in asthma pathogenesis. These results potentially elucidate the disease-modifying mechanisms of bronchial thermoplasty and provide several targets for further investigation.
Collapse
Affiliation(s)
- Shu-Yi Liao
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
- These two authors contributed equally to this work
| | - Angela L. Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
- These two authors contributed equally to this work
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Nicholas J. Kenyon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Richart W. Harper
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|